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Preface

Welcome to UKPEW 2008 at Imperial College London. This is the second time
the event has been hosted by Imperial; the last time this happened was 16 years
ago in 1992. Other previous locations of UKPEW were:

2007 Edge Hill University
2006 Poole
2005 Newcastle
2004 Bradford
2003 Warwick
2002 Glasgow
2001 Leeds
2000 Durham
1999 Bristol
1998 Edinburgh
1997 Ilkley (Bradford University)
1996 Edinburgh

1995 Liverpool John Moores
1994 Edinburgh
1993 Loughborough
1992 Imperial College, London
1991 Edinburgh
1990 Bradford
1989 Edinburgh
1988 Edinburgh
1987 Edinburgh (Heriot-Watt)
1986 Edinburgh
1985 1st UKPEW, Edinburgh

This year UKPEW features two keynote speeches: one by Professor Henri
Bal from Vrije Universiteit Amsterdam and the other by Adam Grummitt from
Metron Technology Ltd. Professor Bal’s specialisation is parallel and distributed
computing; he has, for example, published work (along with John Romein) on
the use of a 144-processor parallel computer to solve the game of Awari, which
required the exploration of 889,063,398,406 board positions. Metron Technol-
ogy Ltd. produces performance management software packages which provide
measurement, analysis, planning and reporting capabilities on a wide range of
operating systems. Adam Grummitt is currently chair of the UK Computer
Measurement Group and is also very active in the IT Infrastructure Library
arena.

In total the proceedings include 29 papers from various UK institutions, in-
cluding Bradford, Edinburgh, Glasgow, Heriot-Watt, Newcastle, Surrey, UCL,
Warwick and of course Imperial. In addition to these places there are contribu-
tions from Algeria, France, Germany, Holland, Hungary, Iran, Oman, Pakistan
and Ukraine. The topics include Grid Computing, Web and E-commerce, Per-
formance Modelling Techniques, Power Management and Wireless Networks.

The social events this year will be a workshop dinner at Med Kitchen and be-
fore that a trip up the Queen’s Tower which will provide some welcome exercise
and a fantastic view of the London skyline.

Special thanks go to the “volunteer” referees who very kindly agreed to look
through all the original submissions: Soraya Zertal, Felipe Franciosi, Richard
Hayden and Fernando Mart́ınez Ortuño. Also, we would like to thank Barbara
Claxton, Ann Halford and Teresa Ng who helped with the local organisation.

The programme committee consisting of Ashok Argent-Katwala, Nicholas J.
Dingle and Uli Harder doubled up as the local organisers, with Ashok sorting out

iii
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the most important items: accommodation and the workshop dinner. They were
supported by the conference chairs Jeremy Bradley and William Knottenbelt.

And of course we need to thank the steering committee of UKPEW who
gave us the opportunity to hold the event at Imperial College London this year:

Irfan Awan (Bradford)
Jeremy Bradley (Imperial)
Stephen Gilmore (Edinburgh)

Stephen Jarvis (Warwick)
Rob Pooley (Heriot-Watt)
Nigel Thomas (Newcastle)

We also need to thank the EPSRC who gave money to this event through a
locally held grant (EP/D061717/1). The Department of Computing at Imperial
also supported the event by making the room hire very affordable.

We hope you will all enjoy this year’s UKPEW and support the event next
year at its 25th anniversary.

London, July 2008
The Workshop Co-chairs & Programme Commitee
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Abstract

The cost of state-of-the-art supercomputing resources makes each individual pur-

chase an expensive and, in many cases, lengthy process. Often each candidate ar-

chitecture will need to be benchmarked using a variety of tools to assess potential

performance. However, benchmarking alone often provides only limited insight

into the potential scalability and suitability of each architecture for procurement.

In this paper we present a case study applying two recently developed perfor-

mance models to the Chimaera benchmarking code written by the United Kingdom

AtomicWeapons Establishment (AWE) with a view to analysing how the code will

perform and scale on a medium sized, commodity based InfiniBand cluster. Our

models are validated with average accuracies of 90% against an existing Infini-

Band machine and then used as the basis for predicting code performance on a

variety of hardware configurations including changes in the underlying network,

faster processors and high core density per processor.

The results of our experimentation with machine performance parameters demon-

strate the compute-bound nature of Chimaera and its sensitivity to network latency

at increased processor counts. By using these insights we are able to discuss poten-

tial strategies which may be employed during the procurement of future mid-range

clusters for a wavefront-code rich workload.

1 Introduction

Modern supercomputing resources are constantly evolving. Where once a ‘super-

computer’ may have been a shared memory machine comprising of tens of proces-

sors housed in a single structure, today supercomputing resources commonly utilise

multiple sub-structures such as cabinets, multiple-processor nodes and more recently

multiple-core processors. When combined with the complex network interconnects

found in modern systems, identifying and analysing the performance properties of the

machine as a whole becomes a significant challenge. With the growing core counts

of modern machines and the ever increasing complexity of each system the task of

A. Argent-Katwala, N.J. Dingle and U. Harder (Eds.): UKPEW 2008, Imperial College London, DTR08-9
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procuring the ‘right’ computing machinery for purpose is fastly becoming a lengthy

and intricate process. Pure benchmarking of applications on candidate architectures

serves only limited purpose - the results will only highlight the performance of spe-

cific codes and often only for specific inputs. For organisations who want the very

best machine performance, a deeper knowledge of code behaviour with respect to each

prospective platform is needed.

Performance modelling has been used as a basis for machine comparison [8, 14]

and post-installation performance verification [15], and has been shown in a number

of examples to address many of the questions which may arise during procurement.

Whilst serving as a showcase for many performance modelling techniques, the focus

has been on very large emerging architectures and not the small to medium sized com-

modity or near-commodity clusters used in a number of research organisations. In

these procurement activities similar issues must be addressed but with hardware which

may have lower specification, be arranged differently or have alternative behaviour to

the expensive components that are common place in supercomputing systems.

In this paper we utilise two recently developed performance models to explore the

performance of the Chimaera neutron transport benchmark developed and maintained

by the United Kingdom Atomic Weapons Establishment (AWE), targetting a process-

ing element count of up to 4096 cores. The direct use and cross-comparison of predic-

tions from two performance modelling techniques aids not only in elucidating specific

code and machine behaviour but also in increasing the accuracies of our observations.

This work is not intended to comment on the respective costs of each strategy but to

provide some degree of quantitative exploration of various hardware and application

configurations, which can in turn support the queries that may arise during the early

stages of a procurement activity. The specific contributions of this work are:

• The presentation of a performance study for the AWE Chimaera benchmark on
commodity or near-commodity hardware. This is the first such study for the

Chimaera benchmark and is designed to support future procurement activities

for mid-range supercomputing resources at AWE. We use two approaches in

verifying our predictions: (1) based on analytic methods utilising the recently

developed “plug and play” reusable wavefront model [18] and (2) using a new

discrete even simulation toolkit. Both approaches show predictive accuracies of

over 90% and provide higher confidence in the conclusions obtained from our

performance engineering study.

• A quantitative exploration of the key parameters which affect the performance
of wavefront codes on modern commodity HPC systems, supporting the explo-

ration of prospective machine configurations for procurement.

• An exploration of the contention costs arising on a CMP-processor-based cluster
when executing Chimaera and the implications for code runtime and machine

procurement.

The remainder of this paper is organized as follows, Section 2 provides a brief overview

of the two main approaches to application modelling - analytical studies and simula-

tion. We introduce the Chimaera benchmark in Section 3 continuing our discussion in

Section 4 by describing the development of two performance models using analytical

techniques and a new simulation-based toolkit. Sections 5 and 6 contain our case study

in which we benchmark an existing 11.5 TFLOP/s InfiniBand system and project run-

times for a variety of alternative application and machine configurations. Our paper

Performance Prediction and Procurement in Practice 2
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concludes in Section 7 with a summary of the results and a review of the implica-

tions for procuring a small to medium size cluster for sustained wavefront-dominated

computations.

2 Performance Modelling

Application performance modelling is principally charged with the derivation of mod-

els by which code behaviour can be analysed and predicted. In the main, the interest

in such models is in analysing how the computational and communication structures in

a code will change with respect to an increased processor count or change in applica-

tion problem size. By developing a deeper insight of the runtime fluctuations resulting

from such changes, an understanding of code bottlenecks, software optimisation and in

many cases optimal configuration can be developed.

Current techniques for developing application models predominantly fall into two

distinct categories - those based on analytical studies and those based on simulation.

Although some conceptual work on a binding of the two is discussed in the POEMS

framework [1], there has been little practical demonstration reported in academic lit-

erature. Analytical studies [11, 13, 21] which seek to represent code behaviour by a

series of mathematical formula, are often developed within some modelling framework

or methodology (e.g. the LogP[4], LogGP[2] and LoPC[5]). The use of rigid frame-

works for modelling helps to alleviate some of the complexity involved in modeling

and provide a generic basis upon which code behaviour can be judged. The challenges

of using an analytical approach are identifying the key application parameters which

affect runtime behaviour and how best to represent each parameter mathematically.

The analysis of code for modelling is often based on manual code inspection which,

although time consuming, allows the performance modeller to develop a deeper under-

standing of specific code behaviour from which further behavioural insights may be

garnered.

A brief overview of the recently developed “plug and play” reusable wavefront

model [18], which serves as the basis for our analytical exploration of Chimaera, is

presented in Section 4.1. Note that the development of a reusable model serves to

reduce the time required to model future wavefront codes, since a flexible framework

can now be applied to any wavefront application; this approach also permits cross-

application comparisons to be made within a highly algorithm-specific framework.

Simulation-based performance systems (e.g. Wisconsin Wind Tunnel [19], PRO-

TEUS [3] and the PACE toolkit [7, 12] ) were originally envisaged as a mechanism to

lower the burden of performancemodelling by eliminating the need to manually inspect

application source code. The automated replay of applications either in source or bi-

nary form allowed developers and performancemodellers alike to experiment with per-

formance by making direct changes to the application and simulating executionwithout

requiring direct access to the specific machine in question. In practice, the simulation

environments developed to date have attempted to directly simulate individual applica-

tion instructions making the simulation of large industrial codes infeasible in realistic

time frames. When the increase of modern application complexity is compoundedwith

increasing core counts of emerging cluster platforms, the use of simulation quickly

becomes intractable as a source of fast and efficient performance evaluation. In Sec-

tion 4.2 we present the development of a prototype simulation toolkit which seeks to

overcome some of the problems discussed, in particular the use of coarser grained

computational timings (as opposed to individual instructions timings) and a ‘layered’

3 S.D. Hammond, G.R. Mudalige, J.A. Smith and S.A. Jarvis
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Figure 1: Sweep execution through the data array in Chimaera.

network modelling system, significantly reduce simulation times, whilst providing pre-

diction accuracies commensurate with leading analytical models.

3 The Chimaera Benchmark

The Chimaera benchmark is a three-dimensional neutron transport code developed and

maintained by the United Kingdom Atomic Weapons Establishment (AWE). On first

inspection the code shares a similar structure with the now ubiquitous Sweep3D ap-

plication described in numerous analytical performance studies [13, 14, 17]. Unlike

Sweep3D, however, the code employs a different internal sweep ordering and utilises

a complex convergence criteria to decide when execution is complete. In this section

of the paper we present a concise description of the wavefront algorithm employed

by both Sweep3D and Chimaera. Our discussion is purposefully brief as a number

of existing works describe the behaviour of the wavefront algorithm [16] and a short

overview is sufficient to enable an understanding of the key application behaviours.

3.1 The Generic Wavefront Algorithm

The generic three-dimensional wavefront algorithm operates over a data array of size

Nx×Ny ×Nz . The data array is decomposed over a two-dimensional processor array

sizedm× n. Each processor receives a ‘column’ of data sized Nx/m×Ny/n×Nz .

For the purposes of our discussion it helps to consider this column as a stack ofNz tiles

eachNx/m×Ny/n× 1 in size. The algorithm proceeds by executing sweeps through
the data which pass from one vertex to its opposite. For Chimaera and Sweep3D eight

sweeps are used - one for each vertex of the three-dimensional space.

A sweep originates at a vertex of the processor array (the origins of each sweep for

Chimaera are shown in Figure 2). The computation required to solve the first tile in the

originating processor’s stack is completed and boundary information is exchangedwith

the two neighbouring processors. Once exchanges are complete the two neighbour-

ing processors solve the first tile in their stack whilst the originating processor solves

its second tile. On completion, boundary information is again passed downstream to

neighbouring processors. A sweep completes once all tiles in the last processor have

been solved. Figure 1 shows a partially complete sweep with dark grey tiles having

been solved in previous stages, light grey tiles are currently executing and white tiles

Performance Prediction and Procurement in Practice 4
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Figure 2: Starting locations for sweep within the two-dimensional processor array

employed by Chimaera.

are awaiting boundary information from upstream processors (arrows are used to show

visible communications to downstream processors). A full ‘iteration’ of the wavefront

algorithm in Chimaera requires all eight sweeps to have completed.

4 Modelling Chimaera

Themodelling of Chimaera has been conducted using two approaches - analytical mod-

elling based on the “plug and play” reusable model [18] and using the new WARwick

Performance Prediction (WARPP) simulation toolkit developed by the University of

Warwick.

4.1 Plug and Play Analytical Model

Model Parameter Chimaera Value

Nx, Ny, Nz Input size

Wg measured
Wg,pre 0

Htile(cells) 1
nsweeps 8
nfull 4
ndiag 2

Message 8Htile

SizeEW ×#angles
(Bytes) ×Ny/m

Message 8Htile

SizeNS ×#angles
(Bytes) ×Nx/n

Table 1: Reusable Wavefront Model Application Parameters.

The “Plug-and-play” reusable wavefront model developed in [18] represents the culmi-

nation of three individual application performance studies for the Sweep3D, Chimaera

and NAS-LU benchmarks. By using the insights obtained in modelling these three

wavefront codes, Mudalige, Vernon and Jarvis have extracted and abstracted the com-

mon parameters (shown in Table 4.1) which affect application runtime into a generic

model. The computational time required,Wg , and the computational time per cell prior

5 S.D. Hammond, G.R. Mudalige, J.A. Smith and S.A. Jarvis

UKPEW 2008 – http://ukpew.org/



Wpre = Wg,pre ×Htile ×Nx/n×Ny/m (r1a)

W = Wg ×Htile ×Nx/n×Ny/m (r1b)

StartP1,1 = Wpre (r2a)

StartPi,j = max(StartPi−1,j + Wi−1,j + Total commE + ReceiveN ,
StartPi,j−1 + Wi,j−1 + SendE + Total CommS) (r2b)

Tdiagfill = StartP1,m (r3a)

Tfullfill = StartPn,m (r3b)

Tstack = (ReceiveW + ReceiveN + W + SendE + SendS + Wpre)Nz/Htile −Wpre (r4)

T ime per iteration = ndiagTdiagfill + nfullTfullfill + nsweepsTstack + Tnonwavefront (r5)

Table 2: Plug-and-play LogGP Model: Single Core Per Node.

to the algorithm kernel,Wg,pre, are the only machine specific values for which bench-

marking of the application is required.. For our study this was obtained by using a

manually instrumented version of the benchmark which times the core computational

kernel of the wavefront algorithm. Wg,pre is unused in Chimaera since there are no

computational sections in the sweep algorithm prior to the main kernel.

The sweep ordering parameters, nsweeps, nfull and ndiag represent the total num-

ber of sweeps per iteration, the number of full sweeps and the number of half sweeps

respectively. The concept of ‘full’ and ‘half’ sweeps relates to the ability of sweeps

within the application to overlap. Recall the sweep ordering presented in Figure 2.

Sweep 2 originates on the processor located in the top right corner of the processor

array. Once this sweep has successfully passed through the bottom right (the starting

location for sweep 3) the next sweep can begin. If this starts prior to sweep 2 fin-

ishing on the bottom left processor, overlapping occurs which serves to increase the

efficiency of the code. Overlapping can only occur if sweep i finishes at the starting
location for sweep i + 1 whilst other downstream processors are still processing sweep
i. This occurs twice in Chimaera (sweep pairs 2,3 and 6,7) giving an ndiag value of 2.

The full reusable model is presented in Table 2 with the complete equation for runtime

given in (r5). Explanations of each sub-equation are given in [18]. Note that in the

original paper describing the reusable wavefront model, the authors develop a complex

LogGP communications model for the Cray XT4 architecture. In this work we develop

a simpler regionalised least squares regression model to obtain times for MPI send and

receive operations (these are presented in Section 5.1.1).

4.2 Simulation using the WARPP Toolkit

The WARwick Performance Prediction (WARPP) toolkit presented in this paper is a

prototype performance prediction toolkit and evaluation engine, which has been de-

signed to support performance prediction and code analysis on machines containing

thousands of processors. More specifically, we intend for our toolkit to provide accu-

rate simulations for modern Massive Parallel Processor (MPP) machines which might

consist of multi-core, multi-processor cabinet structures each having their own com-

plex interconnect or protocol. As the sizes of future machine architectures to continue

to grow, we expect that additional sub-structures will be required to support increasing

core counts, again each is likely to have its own performance properties adding further

complexity to modelling activities. With this in mind the structure of a machine is re-

layed to the simulator by a series of ‘profiles.’ Each profile has unique performance

properties such as network latency, outbound bandwidth etc. When developing a sim-

Performance Prediction and Procurement in Practice 6
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ulation the user is required to specific the respective values for each performance prop-

erty and a mapping of MPI processes to profiles for the specific machine configuration

being analysed. By providing a generic basis for the description of a machine, arbitrar-

ily complex hardware models can be developed enabling the exploration not only of

modern machine structures but also future multi-structured computing resources.

Simulations developed using the WARPP toolkit build upon the observation that

parallel codes are ordered executions of basic blocks separated by control flow, calls

to network transmissions or I/O operations. Like previous simulators we recreate ap-

plication behaviour by replaying the code’s control flow, pausing during execution to

directly simulate computation, communication and I/O events. Communication be-

tween processes are simulated fully ensuring that transmissions between nodes block

when the transmissive partner is otherwise engaged. Computation is, however, mod-

elled quite differently to existing work in that it does not simulate each application

instruction directly. Instead, the toolkit jumps over whole basic blocks within the

control-flow recording the time that the block requires for execution on the target plat-

form. The switch to coarser grained computational timings significantly reduces the

time required for individual simulations aiding in improving the scalability of the sim-

ulator to considerably higher processor counts than previous toolkits. The issue which

arises in moving to coarser grained computational timings is precisely how the time for

the block is extracted from the application. To alleviate the manual instrumentation of

code to obtain such timings the toolkit includes an automated code analyser which in-

jects timing routines into the application source code directly creating an instrumented

benchmark version of the code. The analyser also generates a control flow represen-

tation of the code detailing where each block can be found and how to identify it’s

associated execution time from the instrumented application output.

4.2.1 Developing a Simulation in WARPP

Developing a WARPP simulation involves three stages. In the first the application

source code is analysed using automated code analysis tools - these are responsible for

diagnosing the ‘basic blocks’ of the application and extracting a control flow graph for

each process in the parallel application. Basic blocks are considered to be separated by

either a change in the address counter (as would be caused by a branching statement

or loop) or a communication (such as an MPI Send or MPI Recv). Once the basic

blocks have been found, each is instrumented with timing routines to record the wall

time that is required for execution. Two outputs are produced at this stage of simulation

- an instrumented version of the application’s source code and a basic performance

model which describes the control flow of the application, the arrangement of basic

blocks within this control flow and the points at which communication and I/O occurs.

The second stage of simulation requires the user to benchmark the machine using

the instrumented version of the code and some reliable MPI benchmarking utility (such

as MPPTest [22] or the Intel MPI Benchmark [9]). The output of these benchmarks,

which takes the form of a ‘work time’ for each sequential block and a set of network

latencies and bandwidths, is then fed into the third stage of simulation where the control

flow is replayed using the wall clock times of each block to calculate the compute

resources required and the communication points in the application directly simulated

to obtain a communication model.

During a simulation, data relating to the application’s performance and machine

utilisation is recorded enabling performance modellers to replay the simulated execu-

tion at a later date and analyse where execution time was spent (for example, time spent

7 S.D. Hammond, G.R. Mudalige, J.A. Smith and S.A. Jarvis
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Network Profile Message Size (Bytes) nl (microseconds) B (GBytes/s)

Value Value

on-chip ≥ 0 0.655 2.70

(core to core)

off-processor < 2048 0.69 2.80

(processor to processor) ≥ 2048 0.91 3.83

off-node < 2048 2.64 0.46

(node to node) ≥ 2048 3.63 0.73

Table 3: Benchmarked Network Performance for the CSC-Francesca Machine

(measurements taken using the Intel MPI benchmarking utility version 3.0 [9]. The

Intel C compiler version 10 was used with default system MPI libraries.)

Core Problem Actual Analytical Simulation Analytical Simulation

Count Size Runtime (s) Pred. (s) Pred. (s) Error (%) Error (%)

32 1203 107.18 88.76 89.58 -17.19 -16.42

64 1203 56.72 47.59 48.75 -16.09 -14.04

128 1203 32.56 28.20 28.98 -13.40 -11.01

81 2403 342.33 326.45 330.46 -4.64 -3.47

96 2403 297.03 268.71 277.56 -9.54 -6.55

100 2403 278.37 243.36 248.32 -12.58 -10.79

128 2403 225.65 205.50 207.18 -8.93 -8.18

169 2403 174.35 174.35 177.09 -0.88 1.57

256 2403 129.65 115.58 117.98 -10.85 -9.01

Table 4: Model Validations on the CSC-IBM Francesca Machine - (Compiler - Intel

Fortran 10.0 with -O2 optimisation setting, OpenMPI 1.2.5, All runtimes given are

wall time for sweeping components in seconds, Negative values indicate

under-predictions)

in communication, computation, idle etc). As our studies into the applications used at

AWE deepen we intend to use the simulation data to direct potential improvements in

code structure and resource allocation.

5 Modelling Code Performance on a Commodity High

Performance Cluster

In this section we present the results of a benchmarking and modelling exercise con-

ducted on the recently installed Centre for Scientific Computing (CSC) Francescama-

chine operated by the University of Warwick. The benchmarked values from this ma-

chine serve two purposes - firstly to allow us to verify our performancemodels against a

set of known runtimes ensuring accuracy, and secondly to form the basis of projections

for alternative machine configurations that may be considered during a procurement

exercise.

Performance Prediction and Procurement in Practice 8
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5.1 The University of Warwick Centre for Scientific Computing

(Francesca) Machine

The recently installed 11.5 TFLOP/s Centre for Scientific Computing (University of

Warwick) IBM supercomputer is typical of a large, sub-Million pound commodity

cluster available today. The system comprises of 240 dual-Intel Xeon 5160 dual-core

nodes each sharing 8GB of memory (giving 1.92TB in total). Nodes are connected

via a QLogic InfiniPath 4X, SDR (raw 10Gb/s, 8Gb/s data) QLE7140 host channel

adapters (HCAs) connected to a single 288-port Voltaire ISR 9288 switch. Processor

core to HCA ratio is 4 : 1. Each compute node runs the SUSE Linux Enterprise Server
10 operating system and has access to the IBM GPFS parallel file system [20]. For

our study the Intel C/Fortran 10 compiler suite was used in conjunction with OpenMPI

1.2.5 [6] and the PBS Pro scheduler. By default, jobs launched under PBS are allo-

cated ‘freely’ in the system - i.e. to any free core which meets the wall time or memory

resources requested by the job. Nodes and processors are shared between jobs unless

specifically requested during submission. Runtimes can therefore vary (by as much as

10-15%) between successive runs due to the ‘free’ placement of processes within the

machine and the potential sharing of node resources.

5.1.1 Machine Network Benchmarks and Models

The results of machine benchmarking demonstrating raw MPI latency and bandwidths

are shown in Table 3. Note that the network benchmarking is partitioned into two

regions by message size. The point at which the split in network performance occurs is

2048 bytes, indicating that the InfiniBand management system may be configured for

a maximum transmission unit (MTU) size of 2Kbytes (a maximum of 4K is supported

by the HCA and switch).

For both performance studies we model the communication time for a message

of length x bytes as tsend(x) = (1/B)x + nl with the bandwidth (B) and latency
(nl) associated with the appropriate region for x . The time for a receive is mod-
elled by: trecv(x) = (1/B)x since the receiver does not experience the latency re-
quired to establish the connection but must spend at least the actual transmission time

in a locked state accepting data from the network interconnect. Using these val-

ues we can calculate the point at which bandwidth will dominate network transmis-

sions as: (2.62 × 10−6)/(1(/0.46 × 10243)) = 1304 bytes (small messages) and
(3.63× 10−6)/(1/(0.73× 10243)) = 2846 bytes for large messages. In the context of
Chimaera these values, where each cell contains 10 angles, each of which is a double

floating point value, equate to message sizes of 17 and 36 cells respectively. These val-
ues indicate the “see-saw” point at which the network operates, giving some indication

of whether bandwidth or latency is dominant for each MPI operation.

5.2 Performance Model Validation

Table 4 presents validations of both performance models for the CSC-Francesca ma-

chine. The average prediction error is 10.46% for the analytical model and 9.03% for

the simulation demonstrating the high degree of accuracy in the models and the strong

correlation between both studies.

Note that the vast majority of the predicted runtimes are below the actual execution

time - the principle reason being that both performance models assume as ‘perfect’

allocation of processor cores within the machine, assuming that neighbouring MPI
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ranks will be allocated as closely as physically possible. In practice, the free placement

of processes causes some degree of increased execution time due to the higher network

costs experienced. Similarly, the natural load and noise which occurs from shared

resources helps to create variation in execution. Additionally, predictions are taken

from averaged estimates of machine parameters for which rounding and measurements

may also occur.

6 Procurement: Assessing the suitability of machine

components

Following the benchmarking of the CSC-Francesca machine and validation of the per-

formance models, we present several sub-studies exploring alternative machine or ap-

plication configurations. In the following studies we analyse the effect on code runtime

of a change in (1) an increase in problem size, (2) moving to a gigabit ethernet network-

ing solution (3) the installation of InfiniBand resources with identical bandwidth but

increased latency (4) a change in the performance of individual processor-cores and (5)

a doubling of processor-core density.

6.1 Large Problem Sizes

Figure 3: Parallel Efficiency of Large Problem Sizes using the InfiniBand

Interconnect.

New computing machinery is often purchased with the intention of not only running

current codes but also future higher complexity problems or larger input sizes. The

decision of which machine to purchase today may often be governed by expectations

of how future users intend on using the system. Figure 3 presents the expected parallel

efficiency of an increased input size with increasing processor count. Note that there is

a significant decline in efficiency for each input size as the PE count rises. This effect

is attributable to the increasing proportion of runtime accounted for by communication

resulting from decreasing computation time per processor and an increase number of

network transmissions in the system as a whole.

The measure of parallel efficiency is of particular interest to AWE since parallel

jobs are mandated to be in higher than 50% configurations wherever possible with a

number of users specifically choosing PE counts to target this value. For the 2403
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problem this point occurs between 1024 and 2048 cores indicating the approximate

core count which may be required per job if targeted specifically for a 50% efficiency.

Depending on how many simultaneous jobs the organisation wants to execute at this

level of efficiency an approximate core count for procurement can be deduced. For

larger problem sizes a similar form of analysis is also applicable, however, significantly

more cores will be required before the 50% point is reached.

6.2 Choice of Networking Interconnect

For any machine intended to execute high performance parallel codes the choice of

interconnect is particularly accute. The precise mix of latency, bandwidth capacity

and cost must be balanced to support the compute resources in delivering smooth,

consistent performance. At the time of procurement it is common to want to assess not

only which interconnect will provide the best raw performance but also what the effect

of changing the interconnect or choosing a slightly lower specification will have on

overall runtime. We have modelled two such choices - (1) whether to select a Gigabit

network over an InfiniBand interconnect and (2) the effect of purchasing an InfiniBand

network with identical 4x, SDR bandwidths but 25%, 50% and 75% higher latencies.

Figure 4: Chimaera Runtime using InfiniBand (4x, SDR) and Gigabit Ethernet

Interconnects.

Figure 4 presents the predicted runtimes for a hypothetical machine in which we

have replaced the InfiniBand interconnect with a gigabit ethernet network. The gigabit

runtime is consistently over 100 seconds slower than the InfiniBand system reflecting

the impact of increased latency and a significant decrease in bandwidth. In analysing

the results we propose that the reader considers the economics of purchasing either

fewer processors and a more expensive InfiniBand network or a greater number of pro-

cessors and a less expensive gigabit interconnect - a typical decision which may be

faced in any procurement activity. For the Chimaera benchmark at least, the results

demonstrate that almost twice as many processors will be required to offset the degra-

dation of using a slower interconnect - a significant increase which will in turn make

the machine more expensive to run and potentially more difficult to administer.

In Figure 5 we demonstrate predictions for the percentage increase in runtime re-

sulting from the use of an 4x SDR InfiniBand interconnect with 25%, 50% and 75%

higher latencies. For small processor counts (less than 1000) the increase in runtime is
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Figure 5: Increase in runtime from a 4x SDR InfiniBand network with varying

increases in latency.

less than 6% in all cases. After this point - where communication begins to become a

higher proportion of runtime - the runtime begins to increase rapidly with an increase

of at least 10%. In this scenario the purchase of a lower specification system may be

acceptable if the intention is to limit the maximum processor count of each job to 1024

cores or less.

We also believe that the use of machine configurations for node counts greater than

288 will cause increases in experienced wire latencies as tree based switch topolo-

gies will need to be employed in order to cope with the extra port count. These costs

are not included in this work as benchmarked values to support a predictive model

are not currently available and work completed in [10] provides some suggestion that

contention within InfiniBand switches may be reduced in future systems through the

use of advanced routing algorithms. Figure 5 does however help to give indication of

how sensitive the structured communication pattern used in Chimaera is to even minor

increases in network latency.

6.3 Machine Compute Performance

The compute resources of the machine are usually the feature which draws the most

attention. Whilst only part of the picture for parallel systems, the computational as-

pects of a code are often better understood by domain experts and developers. With

increasing variation in processors being offered in the form of increasing core counts

and arrangements, considerable clock speed differences and in some cases, varying

cache implementations, choosing the ‘right’ processor for an application can be diffi-

cult. We present several studies in this section of the paper which attempt to quantify

the performance benefit of choosing either 10% or 20% faster processors, 10% slower

processors or making the move from the existing dual-core Intel Xeon 5160 proces-

sors to quad-core chips with the same per-core performance but high core-density per

processor.

6.3.1 Increased Individual Core Performance

Figure 6 presents the predicted change in runtime from using dual core processors

with individual core performances of +10%, +20% and -10%. The diminishing returns
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Figure 6: Increase in runtime from a varying changes in individual processor-core

performance.

demonstrate the respective points at which communication begins to dominate runtime.

In each case the change in runtime performance is approximately equal to the change

in per core performance for small processor counts. As the processor count rises the

impact on runtime is reduced due to the increase proportion of runtime accounted for

by communication, reducing the contribution of faster computational resources to the

runtime. Note that at increased processor counts the impact on runtime of using a

slower processor is also reduced. The choice of core performance should therefore be

considered in the context of job size - at small job sizes the runtime is improved best by

using the fastest processors possible, as the core count in use rises there are diminishing

returns from employing faster computational resources.

6.3.2 Increased Core Density - Dual versus Quad Core

With an increasing variety of multi-core processors becoming available including dual,

quad and oct-core configurations, a common issue arising in procurement is which core

density to select in designing the machine’s compute architecture. On initial consider-

ation the economic advantages of higher core densities are consolidation and reduced

power or cooling demands per core, however, the increasing density often impacts on

runtime performance.

In Figures 7(a) and 7(b) we show a set of results obtained from running the Intel

MPI benchmark in three configurations - one, two and four MPI processes per node re-

spectively. The increasing number of processes per node (which is the effect of higher

core densities) reduce the per-core network performance. The increased time to per-

form an MPI send, and the decreased per core bandwidth, result from high levels of

contention for the single InfiniBand HCA per node. Each process must wait longer

before having exclusive access to the machine network. If core densities continue to

rise then this will continue to impact performance unless the issue of contention is

addressed by increasing the number of networking channels per node - the economic

effect of this may be a significant addition to procurement cost.

We have modelled the effect on runtimes of replacing each existing dual-core pro-

cessor with a quad-core equivalent in which the per-core performance of the chip re-

mains identical. The network latency for the InfiniBand network has been left the same

for message sizes less than 2048 bytes, increased by 10% for message sizes ranging
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(a) Percentage change in time required to complete MPI send operation.

(b) Percentage change in per-core network bandwidth

Figure 7: Percentage change in time to send and per-core bandwidth when increasing

the MPI process per node from one to two and four.

Total Core Dual Core Quad Core Percentage

Count Runtime (s) Runtime (s) Change (%)

32 729.97 726.19 -0.52

64 376.46 373.62 -0.75

128 207.18 207.92 0.36

256 117.98 118.50 0.44

1024 66.64 66.33 7.88

4096 37.29 40.45 8.46

Table 5: Predicted Quad versus Dual Core Performance (The quad-core configuration

is modelled with an increased in time to send and reduced bandwidth to account for

contention).
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from 2048 to 4096 bytes and increased by 20% for larger messages. Network band-

width has been changed by the same value but decreased. The changes in latency and

bandwidth are drawn from the observed values shown in the figures above. Table 5

presents our predicted runtimes for the quad core machine compared with the existing

dual core structure. Initially performance is improved since there are more cores utilis-

ing the fast core-to-core transmission speeds. Once core counts reach 1024 processors

the increased latency and reduced bandwidth create up to an 8% increase in runtime.

7 Conclusions

In this paper we have presented a case study detailing the application of two perfor-

mance models - one based on analytical techniques and the other based on simulation

- in supporting the procurement of a large, sub-Million pound commodity cluster for a

wavefront-code rich workload. The study explores the performance and scalability of

the Chimaera benchmark code used by the United Kingdom Atomic Weapons Estab-

lishment.

We demonstrate average predictive accuracies of 90% for a variety of processor

configurations and input sizes. The cross-correlation of predictions from two contrast-

ing performance models serves to increase the confidence in our predictions and the

insights obtained during our subsequent analysis.

More specifically, this paper shows:

• Quantitative estimates for the parallel efficiency of existing and future problem
sizes that are of interest to AWE;

• That a system with a low performance network will require a greater processor
count to offset the effect of higher latencies and lower bandwidth. We demon-

strate this by projecting the performance of a Gigabit ethernet network in com-

parison to a faster InfiniBand system, showing approximately twice as many

processors are required by the ethernet system to achieve comparable levels of

performance at core counts less than 1024;

• Improving/reducing the latency performance by a factor of 2, results in up to
10% change in overall runtime;

• For small processor counts the overall runtime varies by the factor of improve-
ment in per-core performance, but as core counts increase, the contribution of

faster per core performance provides diminishing returns;

• Increasing the core density per processor reduces the performance due to con-
tention for memory and network resources. We estimate the quantitative degra-

dation of overall runtime when doubling core-density from dual to quad core

processors to be approximately 8% up to 4096 cores on the commodity Infini-

Band system studied.

Our results demonstrate that the selection of machine configuration and processor count

should be directed by the average size of jobs the machine is intended to execute. For

multiple small jobs, individually faster processors should be prioritised over a faster

interconnect, since the code is predominantly compute bound at these points. For larger
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jobs, the interconnect plays a more significantly role in performance indicating that a

more expensive, low latency network should be targetted during procurement.

The predictive models used in this study demonstrate efficient, low-cost and rapid

methods to gather quantitative and qualitative insights into questions which arise during

procurement for both currently available and future systems. In contrast, traditional

approaches such as direct benchmarking require significant and expensive machine

execution time and more effort to arrive at a subset of conclusions limited solely to

currently available machine configurations.
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Restart in Competitive Environments

Katinka Wolter∗ Philipp Reinecke†

Abstract

Retransmissions counteract message loss in many protocols for reliable
message exchange. The approach has been generalised to restarting slow
jobs with the intention of reducing completion times. A common concern
with respect to the effectiveness of the restart method is whether it will
be beneficial if used by every one and every task and whether it will harm
those using a longer timeout or not restarting at all.

We present two models that indicate that adaptive restart mechanisms
such as the restart algorithm in [vMW06] will avoid harmful overload by
the efficient selection of a sufficiently large timeout value. This short paper
aims at shedding light on the competitive restart scenario. We do so by
proposing two different queueing models that represent the situation of
multiple users competing for resource usage. The simulations of our two
different models strongly indicate that in a scenario of high load with a
highly variable job completion time distribution restart is especially suited
to prevent the system from collapsing.

1 Introduction

Restart mechanisms are commonly applied in reliable protocols such as the TCP
or the WSRM (Web Services Reliable Messaging) [KR01, BIMT05] to ensure
message transmission in the presence of message loss. Recently, they have also
been studied as a means to reduce job completion times. When the completion
time distribution is characterised by high variance, restart of slow jobs may
yield a lower completion time on the next trial, thereby reducing the overall
completion time of the job [RvMW04, RvMW06a, RvMW06b, vMW06]. This
application of restart is motivated by an experience familiar to most users of the
WWW: When loading a web page takes too long, clicking the ‘Reload’ button
in many cases instantaneously reveals the desired page.
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Intuitively, completion times (e.g. the transmission times of messages sent by a
WSRM implementation) depend, among other factors, on the load on the sys-
tem. In a congested network, message transmissions cannot be expected to be
fast. Furthermore, with high load one expects correlation between subsequent
completion times. In this case, restarting slow jobs will not reduce completion
times. Even worse, restart generates more jobs and may thus increase comple-
tion times further.

Obviously, the efficiency and effects of restart depend on the restart frequency.
This frequency is determined by the timeout after which a job is restarted (e.g.
a SOAP message is resent by the WSRM). While restart timeouts may be set
beforehand, commonly the timeout is adjusted based on observations of previous
completion times (cf. the classification in [RvMW06b]).

In this work we aim to investigate the evolution of the restart timeout under
increasing load. We focus on the algorithm proposed in [vMW04], which deter-
mines a restart timeout that minimises the expected completion time, based on
observations of the completion time distribution. The assumption is that trans-
mission times will increase with heavier load and hence the retransmission (or
restart) timeout will increase as well. In consequence, in a heavily loaded system
less restarts will be triggered by the restart algorithm, avoiding congestion.

To investigate this situation we set up two different queueing models. The first
is a simple single server model. This model includes queueing and jobs are
restarted if their response time exceeds a given timeout. As the response time
of a job consists of the waiting time as well as the service time of a job it is not
a simple random variable behaving according to some distribution. Service of
each job, however, is straightforward.

The second model avoids queueing and represents the behaviour of the network
as load-dependent service rate. Each job is served immediately, but at varying
service rate.

Both models are implemented in a simulation in Mathematica and compared
in their response time and queue length (including the number of jobs in ser-
vice). Simulation analysis strongly supports our presumption that restart is of
particular aid in managing highly loaded systems.

2 Basic Restart Model

The basic restart model is very simple [vMW06]. A task is started, and when
it has not completed at a threshold time, it is retried. The task is assumed to
complete according to some probability distribution, and it is assumed that each
retry terminates the previous attempt (synchronous, abortable task execution in
[RvMW06b]). One question to be asked is: In order to minimise the completion
time, what is the best time to restart? If long transmission times are caused
by congestion it might be wise not to restart too soon. Reducing the load in
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a network may be the most efficient way to speed up transmission times. As
a consequence, different optimisations are possible and the restart time can
be selected in different ways. In earlier work we have studied static as well
as adaptive timeout selection algorithms [RvMW06a] and their effect on the
transmission time.

One practical instance of this model is restart as employed in a Web Services
Reliable Messaging implementation: The WSRM source sends SOAP messages
to the WSRM destination using a SOAP transport. The most common SOAP
transport is the HTTP. The WSRM destination acknowledges received SOAP
messages to the WSRM source. If the WSRM source does not receive an ac-
knowledgement for a message before a timeout elapses, it resends this message.
In this scenario, retransmissions may be triggered by message loss and by de-
layed transmissions, e.g. due to stalling TCP connections. The WSRM source
must determine a timeout that ensures fast transmission of messages. However,
if the timeout is set too low, overload may result.

It should be noted that this example presents a simplified view on WSRM. In
general, the WSRM source cannot abort previous transmissions; furthermore,
WSRM implementations usually send several messages in parallel instead of
sequentially.

3 Single Server Queueing Model

In the simple single server queueing model we assume that jobs can arrive from
different sources at different rate. Since the arrival process to the queue is a
renewal process we can compute the arrival rate as the sum of the rates of the
single arrivals and simply consider one arrival stream. For the time being the
restart timeout is identical for all arrival streams and is based on the overall
response times.

!

!

!

2

3

4

µ

!
1

Figure 1: Single server queueing model

The single server queueing system is shown in Figure 1. Jobs arrive at rate λ =∑
i λi to the queue. Each job draws a randomly distributed service time. While

waiting in line, the timeout value for the job is decreased. It can happen that
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even before the job enters service the timeout expires and the job is reinserted
into the queue using a newly drawn random service time.

For exponentially distributed interarrival and service times this situation cor-
responds to a reordering of the queue, which should not have any effect on the
mean response time.

The model has the disadvantage that job response times consist of the service
time and the waiting time. With a restart the service time is newly drawn
from a distribution, but the waiting time depends on the length of the queue.
Even a shorter service time upon the next trial may in some cases not coincide
with a shorter job response time. It has the advantage that in the simplest
case, when interarrival as well as service times are exponentially distributed, it
corresponds to an M/M/1 queueing system. This M/M/1 queue could easily be
solved analytically, would not restarts complicate matters.

Other authors use several queues [MM04], while we in this model assume jobs
to return to the same queue using the same server. In our solution algorithm
we simulate a queueing system with exponentially distributed interarrival time,
one server, restarting jobs and an arbitrary service time distribution.

4 Degrading-Rate Infinite Server Queueing Model

We arrive at our second model from a system perspective: There is one server
with service rate µ and m agents, each generating jobs with an arrival rate
λ. Every job arriving at the server is immediately served, i.e. there is no
queueing involved. In contrast to the well-known M |M |∞ and M |M |m queues,
the service rate of the server is shared among all simultaneously served jobs, i.e.

µi =
µ

i
, for i = 1, 2, . . . , m jobs.

Each job generated by an agent k is assigned a timeout τk. Jobs that do not
finish within the timeout are removed from the system and restarted. We model
restart by drawing a new service time.

This model addresses the competitive aspects involved when restart is applied
by several parties accessing the same resource. In particular, it promises to offer
the following benefits over the single-server queueing model:

(1) It allows us to study the effects of incomplete knowledge on the part of the
agents, since each agent bases its restart timeout only on observations of its own
completion times.

(2) It models the effects of high load directly, by sharing the available capacity
between all agents, and reducing the service rate accordingly.

(3) It is open to extensions modeling more complex job characteristics. For
instance, one may consider jobs that comprise a (randomly drawn) ‘thinking

21 K. Wolter and P. Reinecke

UKPEW 2008 – http://ukpew.org/



period’, during which the job does not occupy server resources (i.e. µ = k =
µ/(k−wk), where 0 ≤ wk ≤ k is the number of ‘thinking’ jobs). Such periods
may be observed with e.g. TCP connections that stall during connection setup
[KR01, RvMW06a, RvMW06b, RW08].

On the other hand, the model is much more complex. In particular, it may not
lend itself easily to elegant solution techniques. Furthermore, we note that this
model is not fully developed yet and may perhaps be reduced to a system of m
parallel queues with load-dependent servers.

5 Analysis and Comparison of the Models

We have implemented both models in Mathematica simulations. In this section
we show results from both implementations.

In both models we use the Lognormal distribution for the work requirement
of a job, or the service time distribution. We parameterise the Lognormal
distribution such that the squared coefficient of variation equals 12, i.e. is quite
large. The parameters µ and σ of the Lognormal distribution are set to µ = 0.3
and σ = 2. This implies that the expected service time E [S] = 10.

With exponentially distributed interarrival times the first model corresponds to
a modified M/G/1 queue. Jobs arriva at rate λ = 0.08. The utilisation of this
queue, ignoring the restarts, then is ρ = E [S] ·λ = 0.8. Within the mission time
of 10000 time units the queue could process 698 jobs while using 288 restarts.
The mean job completion time equals 3.22. Of interest is the evolution of the
queue length as well as the value of the timeout τ . Both are shown in Figure 3

10 20 30
completion time

50

100

150

200

count

200 400 600 800 1000 1200
completion time

50

100

150

200

250

300

350

count

Figure 2: Histogram of completion times with (left) and without (right) restart
and λ = 0.08

Without using restart the queue could process slightly more (713) jobs, but the
mean response time was 169.93. This is due to some large outliers as shown in
the histogram on the right hand side in Figure 2. In the given scenario with
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relatively low load one clearly benefits from using restart. The queue length
when using restart is much shorter and the mean completion time is much less.
The restart timeout τ mostly stays below 30, which means that jobs are aborted
after relatively short time. On the average almost every second job is restarted
once and apparently the probability of sampling a short service time after few
restarts is quite high.
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Figure 3: Queue length and timeout value for λ = 0.08

To evaluate the impact of higher load the arrival rate of jobs was increased to
λ = 0.095, leading to a utilisation of ρ = 0.95 when ignoring restarts.

Without restarts 726 jobs are processed with a mean completion time of 211.26.
The histogram looks similar to the one in Figure 2 on the right with slightly
more frequent large values. It is omitted here.

Using restart the performance indicators of the queue are almost unchanged.
The mean response time of jobs is 3.09191 and the queue has processed 878
jobs with 320 restarts. It should be noticed that these numbers are based on
single simulation runs and are therefore within the normal limits of randomness.
The graphs are omitted here as they are similar in structure to the ones shown
above.

In this model increasing the load has an impact on completion times when not
using restart, but with restart the system seems not to suffer.

The second model we ran for 10000 time units. In each run a constant num-
ber of agents was used, while increasing the number of agents in consecutive
evaluations. Each agent draws a work requirement for its jobs from the same
distribution. The agents process their work in a processor sharing fashion. Af-
ter completion of a job, the agent pauses randomly a short time interval (or
none) and then draws and processes the next job. We compare results with
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Figure 4: Mean job completion times in the second model

and without restart, only using our QEST algorithm [vMW06] to determine the
restart interval length.

The results are shown in Figure 4. The solid lines show the mean completion
time of the jobs when using the number of agents as indicated on the x-axis,
competing for the server. Clearly, the mean completion time per job increases
when more agents share the server. But, interestingly, this increase is much
less when agents are allowed to restart their job in case it takes too long. The
dotted curve shows the average number of restarts an agent performs during
its working time of 10000 time units. Initially, the number of restarts an agent
performs increases, saturating at around 130 restarts.

Figure 5 shows the number of jobs that can be processed by the system in total
when using the number of agents as given on the x-axis and with or without
using restart. Using restarts a fixed number of agents is able to complete up
to a factor 3 as many jobs. The number of restarts in Figure 4 can now be
interpreted as follows. If 20 agents are using a server they process in total
roughly 7500 jobs, so each agent can complete on the average 375 jobs. While
executing those 375 jobs the agent uses roughly 130 restarts. On the average
almost one out of three jobs experiences a restart.

If there are only 10 agents in the system, each agent applies the same number
of restarts (roughly 130), but each agent processes on the average 650 jobs,
resulting in a total of 6500 jobs, so the agent will restart only one in 5 jobs.

As the system becomes more congested restart is applied more frequently, re-
sulting in an only mildly increasing completion time with an increased process-
ing capacity in terms of the number of completed jobs. Concluding from this
analysis restart should be favoured more strongly the more congested a system
becomes.
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Figure 5: Number of jobs completed within the mission time

Comparing the two models is not straight forward. The simple queueing model
can be seen as an implementation of the second model with only one agent.
Then job completion times with restart are in a similar order of magnitude.

6 Conclusion

In this short paper we have presented two different queueing models designed to
analyse the effects of restart in a heavily loaded environment. We want to study
the effects of restarted jobs on job completion time as well as on the system load.

The first model is a single server model, corresponding in the simplest case to
an M/M/1 queue. The model is complicated by allowing jobs to drop out and
reenter the queue using a new randomly drawn service time. In this model the
queue length can be interpreted as system load, which can be studied together
with the response time. However, the response time as such is not a random
variable. Instead it depends on the waiting time as well as the service time. The
processing speed of the server is constant at all times and the response time of
a job depends on its service time as well as the waiting time in the queue. This
model is not able to represent slow processing due to congestion. Heavy load
will only show in long waiting times.

We therefore propose a second model, where all jobs are served simultaneously
in a round-robin, or processor sharing, fashion, leading to a load-dependent
service rate. The more jobs are in the system the slower the server becomes.
Here again jobs can drop out and return to the queue, immediately entering
service again.

The results from our models are promising, but this paper presents ongoing
work that leaves some questions unanswered.
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In particular the common special cases of the two models with similar results
still need to be identified.
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A PEPA model of a threshold policy
sleeping server

Nigel Thomas ∗

Abstract

In this paper a model of a server which may undergo periods of sleep
when idle is presented using the Markovian process algebra PEPA. The
distributions used in this model are assumed to be of a phase type. This
model can be applied to the study of systems where the conservation of
energy is of particular concern, e.g. mobile devices or server farms. This
gives rise to a trade-off between response time and power consumption
which is explored numerically.

1 Introduction

Queueing models involving various forms of server vacation have been studied
for many years. The case where a server can enter a sleep mode when the
queue is empty has recently taken on more relevance with growing interest
in power conservation. There are two broad areas where conserving power is
of interest. The first is mobile communications, where devices have a limited
battery life and prolonging the life of the battery is the principal performance
measure of interest. The second case is large scale systems, such as server farms
or computational grids, where there are many machines experiencing varying
service demands. In this situation it is considered advantageous to power down
a subset of the available servers at times of low demand in order to reduce costs,
whilst still maintaining an acceptable level of service quality.

The model presented here is related to a class of model sometimes referred to
as N-policy queues, first studied by Yadin and Noar [11]. A server enters a sleep
period when the queue becomes empty and remains sleeping until there have
been a sufficient number of arrivals (i.e. when the queue has N waiting jobs).
The server then wakes up and serves the jobs until the queue is empty. The
model in this paper is different from earlier work on N-policy queues in that it
is assumed that turning the server off and on takes time (and consumes power),
whereas in most previous studies (with the exception of [7]) it is assumed that
these transitions are instantaneous and cost free. A further implication for the
model of this assumption is that additional requests may arrive into the queue
whilst the server is powering up or powering down. A very small number of
other studies have also considered queues to have finite capacity, most notably
in relation to this paper is Wang et al [10].

In this paper a sleeping server model is specified using the Markovian process
algebra PEPA. A number of assumptions are made that enable this model to be
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analysed using the PEPA Workbench [3]: the queue is assumed to be finite, the
service, power up and power down time distributions are assumed to be of phase
type and the arrival distribution is assumed to be Markov modulated Poisson
to give bursty arrivals.

In the following section a brief overview is given of PEPA and how it is used
to model phase type distributions. A more detailed description of the model and
its formal specification is then presented, followed by some numerical results.
Finally some conclusions are presented along with some possible directions for
future work.

2 PEPA

A formal presentation of PEPA is given in [5], in this section a brief informal
summary is presented. PEPA, being a Markovian Process Algebra, only sup-
ports actions that occur with rates that are negative exponentially distributed.
Specifications written in PEPA represent Markov processes and can be mapped
to a continuous time Markov chain (CTMC). Systems are specified in PEPA in
terms of activities and components. An activity (α, r) is described by the type of
the activity, α, and the rate of the associated negative exponential distribution,
r. This rate may be any positive real number, or given as unspecified using the
symbol !. The syntax for describing components is given as:

P ::= (α, r).P | P + Q | P/L | P !"
L

Q | A

The component (α, r).P performs the activity of type α at rate r and then
behaves like P . The component P + Q behaves either like P or like Q, the
resultant behaviour being given by the first activity to complete.

The component P/L behaves exactly like P except that the activities in the
set L are concealed, their type is not visible and instead appears as the unknown
type τ .

Concurrent components can be synchronised, P !"
L

Q, such that activities
in the cooperation set L involve the participation of both components. In PEPA
the shared activity occurs at the slowest of the rates of the participants and if
a rate is unspecified in a component, the component is passive with respect to
activities of that type. The parallel combinator ‖ is used as shorthand to denote
synchronisation with no shared activities, i.e. P‖Q ≡ P !"

∅
Q. A

def= P gives the
constant A the behaviour of the component P .

In this paper we consider only models which are cyclic, that is, every deriva-
tive of components P and Q are reachable in the model description P !"

L
Q.

Necessary conditions for a cyclic model may be defined on the component and
model definitions without recourse to the entire state space of the model

2.1 Phase-type distributions

The exponential distribution is not always the most interesting to employ when
considering models of computer networks. In addition it is not necessarily the
most realistic for practical applications, particularly arrival processes. Although
PEPA cannot be used to model general distributions, it can be used to specify
phase type distributions. Phase type distributions are distributions constructed
by combining multiple exponential random variables. These can be used to
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approximate most general distributions and approximations can be constructed
using tools such as EMpht [1].

The Erlang distribution is a commonly used example of a phase type dis-
tribution which consists of an exponential distribution repeated k times. The
PDF for the Erlang distribution is as follows:

f(x) =
λkxk−1e−λx

(k − 1)!

In PEPA this is generally modelled as a ticking clock:

Clocki
def= (tick, t).Clocki−1 , 1 < i ≤ k

Clock1
def= (event, t).Clockk

Where t = kλ. The Erlang distribution is generally used to approximate deter-
ministic events; the greater the value of k (i.e. the more ticks) the more deter-
ministic the Erlang distribution becomes. However, it should also be noted that
the larger the value of k, the more states there will be in the underlying CTMC.
Hence, although we may wish to have 40 or 50 ticks to generate a nearly deter-
ministic process, in practise a typical value of k is in the range [5, 10]. When
studying network protocols the Erlang distribution is very useful for modelling
timeouts.

Another important phase type distribution is the hyper-exponential, or Hk,
distribution, which is a random choice between k exponential distributions. The
most commonly used hyper-exponential is the H2-distribution, which has three
parameters, α, µ1 and µ2 and the following cumulative distribution function.

FH2 = 1− αe−µ1t − (1− α)e−µ2t , t ≥ 0.

In PEPA this branching cannot be modelled explicitly except by introducing a
new pair of actions over a choice operator. However, in practise branching may
be represented implicitly at the preceding action. Thus if a request arrives into
an empty queue and gets a hyper-exponential service, it could be represented
thus:

Queue0
def= (arrival, αa).Queue1a + (arrival, (1− α)a).Queue1b

Queue1a
def= (service, µ1).Queue0

Queue1b
def= (service, µ2).Queue0

In this representation the probabilistic branch is made by the choice of one of
two arrival actions. The arrivals themselves will occur at the rate λ, i.e. the
sum of the two branches under the race condition. Alternatively, as in the model
in this paper, a service component can be constructed as follows:

Server
def= (service, αµ1).Server + (service, (1− α)µ1).Server′

Server′
def= (service, αµ2).Server + (service, (1− α)µ2).Server′

It is important to note that in this representation the Server component will
always perform a service action at rate µ1 first before having the opportunity
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to branch. Subsequent service actions will occur at either rate according to
the branching probability α. This behaviour would not affect the overall steady
state solution (since the start state is irrelevant in steady state when the model
is irreducible), however it should be noted that inconsistent results may arise
when transient or passage time analysis is naively applied to such a model.

An important feature of the hyper-exponential distribution is that it has a
greater variance than an exponential distribution of the same mean (as long as
µ1 '= µ2 obviously). This is in contrast to the Erlang distribution (for example);
thus by a choosing between Erlang, exponential and hyper-exponential it is
possible to consider a wide range of behaviours.

An important class of distributions for network modelling concerns ‘bursty’
arrival processes. The most common way of modelling this is to use Markov
modulated Poisson process (MMPP). In PEPA this is simple to model as follows:

Arrivalsoff
def= (turnOn, γ).Arrivalson

Arrivalson
def= (arrival, λ).Arrivalson + (turnOff, β).Arrivalsoff

There are many other phase type distributions that can be used and good
approximations to most general distributions can be made. It is worth noting
however that the more phases considered, the greater the impact on the size of
the state space, which can be a limiting factor for some forms of analysis.

3 The Model

The system is modelled as a simple single server finite queue. Requests arrive
at the queue according to a two state Markov modulated Poisson process. In
the ‘on’ state, arrivals occur at a rate λ and in the ‘off’ state no arrivals oc-
cur. Transitions occur between these states according to negative exponential
random variables; from ‘on’ to ‘off’ at rate β, and from ‘off’ to ‘on’ at rate γ.

If the queue is not full, requests will be accepted and processed on a first come
first served basis. If the server is awake, then requests are processed according
to a two-phase hyper-exponential distribution (H2), with parameters α, µ1 and
µ2. The specification of the queue follows the usual state-based approach for
models of this nature, see [8] for example.

If the queue is empty then the server may enter a sleep period. It takes
an Erlang-K distributed period to power down the server (poweroff with mean
1/ξ). During this period requests may continue to arrive and be queued, but
the server is committed to shutdown. Once the server has shutdown, it enters
the sleep mode, where requests continue to arrive and are queued. Once there
are N requests in the queue, the server begins to power up (again, Erlang-K
distributed, with mean 1/η). Once again, during this process more requests
may arrive and be queued. Note that the power up process can only begin after
the power down process has completed. Therefore, in the unlikely event that N
or more arrivals occur during powering down, the server will not begin to power
up immediately, i.e. there is no equivalent of the powerup action in Shutdowni

for i ≥ N .

Sleepi
def= (arrival,!).Sleepi+1 0 ≤ i < N
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Sleepi
def= (arrival,!).Sleepi+1 + (powerup,!).Queuei

+(tock,!).Sleepi N ≤ i ≤ n

Sleepn
def= (powerup, η).Queuen + (tock,!).Sleepn

Shutdowni
def= (poweroff,!).Sleepi + (tick,!).Shutdowni

+(arrival, a).Shutdowni+1 0 ≤ i < n

Shutdownn
def= (poweroff,!).Sleepn + (tick,!).Shutdownn

Queue1
def= (service,!).Shutdown0 + (arrival,!).Queue2

Queuei
def= (service,!).Queuei−1 + (arrival,!).Queuei+1 1 < i < n

Queuen
def= (service,!).Queuen−1

Arriveon
def= (arrival, λ).Arriveon + (off, β).Arriveoff

Arriveoff
def= (on, γ).Arriveon

Server0
def= (service, αµ1).Server0 + (service, (1− α)µ1).Server1

Server1
def= (service, αµ2).Server0 + (service, (1− α)µ2).Server1

PowerOff1
def= (poweroff, ξ/K).PowerOffK

PowerOffi
def= (tick, ξ/K).PowerOffi−1 1 < i ≤ K

PowerUp1
def= (powerup, η/K).PowerUpK

PowerUpi
def= (tock, η/K).PowerUpi−1 1 < i ≤ K

(Arrive !"
arrival

Sleep0 !"
service

Server0) !"
L

(PowerOffK ||PowerUpK)

Where L = {poweroff, powerup, tick, tock}.
The model forms a continuous time Markov chain with 4(M + T + K(2M +

2− T )) states.

4 Numerical results

This model is now evaluated numerically using the PEPA Workbench [3]. In
all experiments the phases of the Erlang distributed clocks was taken to be 6.
The maximum queue size is limited at 30, hence this model has 794 states when
N = 1.

The key element of this form of sleeping server is the optimal choice of
the threshold value. If the threshold is too large then jobs will experience
excessive waiting time and increase the probability that the queue will become
full and jobs lost. In general, if the threshold is too small then the server will
power up, serve the waiting jobs and power down on a regular basis, consuming
resources (power and computation time) on these transitions. Ultimately the
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optimum value will depend on the parameters chosen, most crucially the length
and intensity of the arrival bursts. If the bursts are sufficiently intense then
it will be beneficial to turn on the server as soon as the burst starts, i.e. the
threshold will be very small. This is because the queue will be very unlikely to
become empty during an arrival burst. Thus, the aims become to power up the
server very soon after the start of the burst and power it down once all the jobs
from the burst have been served.
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Figure 1: Proportion of time the server power is on, where the threshold value
is varied for different arrival rates during bursts, µ1 = µ2 = 10, β = γ = 1,
ξ = η = 60, K = 6.

Figures 1-3 show the performance of a single N -policy queue at different
arrival rates.

As expected, in Figure 1, the power consumption is least when the threshold
is largest and the response time is least when the threshold is 0. The profile of
the power consumption plots changes considerably with load; the biggest gain
in increasing the threshold is made when the load is lower. This is because at
low load the queue is more likely to contain few jobs, whereas at higher load
the queue is more likely to exceed the threshold during the burst, regardless of
the threshold value. This implies that, for infrequent intense bursts (λ >> µ),
the threshold value is not, in fact, very important, and any threshold (N ≥ 1
will achieve similar results.

The gradient of the response time plots in Figure 2 is not greatly influenced
by load between λ = 10 and λ = 14, although obviously the response time
is greater when the load is higher. However, the profile of λ = 6 is noticeably
different and, surprisingly, at N = 5 the average response time for λ = 6 exceeds
that of λ = 10. Taken in isolation this result would be quite perplexing, however
looking at Figure 1 it is clear that the service time offered in these cases is quite
different. This is because for any λ and N there is a small probability that a

A PEPA Model of a Threshold Policy Sleeping Server 32

UKPEW 2008 – http://ukpew.org/



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5

N

W

14

10

Figure 2: The average response time, where the threshold value is varied for
different arrival rates during bursts, µ1 = µ2 = 10, β = γ = 1, ξ = η = 60,
K = 6.

burst will not cause the queue to exceed the threshold. As N increases and λ
decreases this probability becomes increasingly significant, to the point where
it is likely that more than one burst is required to exceed the threshold. This
means that, for low load and larger thresholds, an arrival is quite likely to be
in the queue for some time before the server turns itself on and begins service.

In Figure 3 the rate at which jobs are lost is shown to not be greatly affected
by the threshold value, even when λ = 14. This is because the server is fast
enough that the queue rarely becomes full (causing loss). If the bursts were
longer and more intense, then this may become more of an issue. The crucial
observation here is that in this model there are no arrivals between bursts. If
there was a low level of arrivals between intense bursts then the server would
spend its time turning off and on at regular instants if the threshold was short, or
allowing a few jobs to sit in the queue for a long time if the threshold was larger.
This can easily be incorporated into our model by modifying the Arriveon and
Arriveoff behaviours.

Arriveon
def= (arrival, λhigh).Arriveon + (off, β).Arriveoff

Arriveoff
def= (arrival, λlow).Arriveoff + ((on, γ).Arriveon

The greater the difference between the two arrival rates, the more bursty
the arrivals are; typically, λhigh >> λlow. It might be considered confusing to
have arrivals during an off period, hence it would be clearer to rename these
components Arrivehigh and Arrivelow . We can now study the situation where
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Figure 3: The rate of job loss, where the threshold value is varied for different
arrival rates during bursts , µ1 = µ2 = 10, β = γ = 1, ξ = η = 60, K = 6.

there is a small, but persistent, trickle of jobs arriving between bursts, this is
shown in Figures 4-6.

Figure 4 shows that the background traffic does indeed have an impact in
the proportion of time that the server is on. It is interesting that with the
background rate of λlow = 2, this proportion is increased across all the values
of N shown, whereas the intuition might be that the impact would be greater
for N = 1 than N = 5. There is a clear difference between the server on times
for different arrival rates, with the server being on for up to 80% more when
λhigh = 14 than when λhigh = 6. However, there is a down side to this improved
energy efficiency at low load, and this is shown in Figure 5. Here we see again
(as in Figure 2) that jobs will reside in the system for longer whilst the server
is off. However, as there is a small background load it is more likely that a
burst will exceed the threshold, even when λ = 6. Further, if a burst just fails
to reach the threshold, it will be exceeded soon after by further arrivals in the
background traffic. Clearly, this means that the server is switching on and off
more frequently and this is evident if we compare Figures 1 and 4.

The magnitude of the response time is also increased in Figure 5 from that
in Figure 2. This is due to the overall increase in the average arrival rate
(as λlow = 2 instead of 0). Finally, Figure 6 shows that the loss rate is still
not greatly impacted by this low level of background traffic. However, there
is a small loss rate when load is higher and this does increase slightly as the
threshold value increases (and the server is consequently turned on less).
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Figure 4: Proportion of time the server power is on, where the threshold value
is varied for different arrival rates during bursts, µ1 = µ2 = 10, β = γ = 1,
ξ = η = 60, K = 6, λlow = 1.

5 Conclusions and Further Work

In this paper some initial results have been presented for an N policy queue.
This is part of an ongoing investigation into the trade-off between performance
and power consumption. Some of these results are slightly counter intuitive. In
particular we show that a system with a low load of bursty traffic can have a
slower response time than a similar system with slightly higher load. Clearly,
the trade-off between power and performance as demonstrated here is subtle
and complex and worthy of much further exploration.
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A Middleware for Activating the Global
Open Grid

Jeremy Cohen ∗ Colin Richardson † John Darlington ‡

Abstract

The continuing development of Computational Grids is being sup-
ported by extensive research in science and industry. The ability to share
resources both within and across organisations provides opportunities for
significantly increased resource utilisation. However, there are many issues
with the sharing of resources, both in finding available resources for use
and, particularly across organisations, with the transfer of funds between
providers and consumers and the defining of Service Level Agreements
(SLAs). In this paper we describe the MAGOG architecture a Middle-
ware for Activating the Global Open Grid an alternative to standard
middleware designs that is based on a peer-to-peer infrastructure. It is
believed that MAGOG provides a highly scalable infrastructure to sup-
port the discovery of resources and agreement of usage terms for an open
market in computational power.

1 Introduction

Computational Grids offer the potential for cross-organisational access to het-
erogeneous resources. The term Virtual Orgnisation (VO) is often used to refer
to a logical grouping of entities from different physical organisations that work
together in a Grid environment sharing resources. Support for VOs is provided
through middleware, software that sits between users and the fabric of hetero-
geneous hardware resources that they wish to access. This middleware provides
various services that allow users to discover available Grid resources and execute
jobs on them.

Cross-organisational resource access within the context of a VO is helpful to
users and can result in more efficient working environments once the hardware
and software are configured. However, these Grid environments are generally
the result of a collaboration between a group of individuals or organisations
that are known to each other and where there is some level of trust between
the parties that can be supported by technical security measures. Firewall rules
may need to be altered to allow traffic to flow between organisations’ systems
and accounts or account mappings may be required so that users can execute
jobs on the remote machines that are exposed through middleware installations.
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However, as the development of Grids continues and, more recently, Utility
Computing providers are appearing that offer remote access to resources in a
pay-per-use, on-demand manner, the desire for easier access to remote resources
is growing. The vision of Grid Computing is the emergence of a global Grid
of resources owned by many different entities, accessible on-demand, with users
paying for the processing time that they use. Some of the significant issues
with reaching this vision are how resources are discovered, how their usage is
negotiated and how payment is transferred between parties who are unknown
to each other and untrusted by each other. In this paper we present a technical
view of MAGOG – a Middleware for Activating the Global Open Grid – whose
design was conceived by Colin Richardson in 2006 and set out in [6] and [7].
MAGOG is based on a peer-to-peer architecture and takes a radical approach
to discovering remote resources and negotiating for access to them. It is based
on three key concepts: the ‘catallaxy’ paradigm of economics, the ‘small-worlds’
principle and a double message-flooding algorithm. We describe the design of
the middleware and look at possible techniques for implementing such a system
on top of the existing Internet.

The rest of the paper is organised as follows. Section 2 provides an overview
of the concepts underlying MAGOG, with the full architecture being detailed in
Section 3. In Section 4 we look at implementation techniques and in Section 5
we discuss expected market behaviour of the middleware with conclusions and
further work covered in Section 6.

2 Concepts

The MAGOG middleware is based on 3 key concepts; Catallaxy, the ‘small-
worlds’ paradigm and use of a double message-flooding algorithm.

Catallaxy : The term Catallaxy was first used by economist Friedrich von
Hayek to define the costless emergence of a stable state in a decentralised market
within which all entities aim to maximise their utility. The use of this paradigm
in the study of computational infrastructures has also been attempted within
the CATNETS project [1] where it has been used in the provision of an efficient
resource allocation and scheduling mechanism for Grid environments.

The ‘small-worlds’ paradigm: Stanley Milgram observed from his work [4]
that there are, on average, six degrees of separation between any two individ-
uals on earth. Taking the model of human networking and applying this to
computing networks, it can be seen that the models are not dissimilar. At
the edges of the network are entities that have a small number of connections
to others, moving into the middle of the network, better connected nodes are
reached that have knowledge of much larger numbers of nodes and how they can
be reached. Applying this small-worlds paradigm to computer networks gives
us the small-world network. From this model it can be seen that in a network
with a structure that approximates a small-world network, any node with a
connection to the outside world should be able to reach any other node within
an average of six hops.

Double message-flooding: In networks, particularly within peer-to-peer envi-
ronments, one of the approaches taken to get messages out to a number of nodes
is to send a broadcast message. When these messages are designed to travel a
long distance through a network, they are given a large TTL (time to live) value
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and sent on their way, multiplying and traversing links between routers until
they reach an edge node (i.e. a non-routing hardware resource at the edge of
the network), or their TTL is exhausted. Large numbers of such messages can
cause significant network congestion as they are copied across network links.
This process of message flooding is impractical in the modern Internet infras-
tructure so an alternate approach to finding resources is necessary. However, if
messages are sent in two directions, from both those wanting to contact other
nodes, and those waiting to be contacted, and these messages are evaluated at
resolution points within the network, it is possible for a match to be made at a
remote location, significantly cutting down on the amount of traffic within the
network. This process of sending messages in two directions is termed double
message-flooding.

3 The MAGOG Architecture

MAGOG is a peer-to-peer style architecture that utilises the concepts described
in the previous section. The architecture allows the discovery of remote re-
sources and agreement of usage terms. It additionally provides support for
Service Level Agreement (SLA) definition and transfer of payment. We begin
by looking at the high-level MAGOG scenario shown in Figure 1. It should be
noted that we consider the Grid fabric to be formed of any number of different
computational devices. Each of these devices communicates with other devices
through a client/server interface to the environment.

C
S

Softw
are

Reposit
ory C S

Proprietary 

Network

C S

HDD Array

C S

Super Computer

S

GCH 

(Accounting)

C

GCH
(Legal)

C S

Laptop PC

C S

Desktop PC

C
S

W
ork

sta
tio

n

C
S

P
ro

p
rie

ta
ry

G
rid

C
S

IP
S

S
C

M
T
U

 A
rr

a
y

C
SIn

st
ru

m
e
n
t

C
S

D
a
ta

R
e
p
o
s
ito

ry

C
S

V
isu

a
lisa

tio
n
 

S
tu

d
io

SecureDatalink
Funds in escrow

Grid Fabric

C
S

Proprietary 

Cluster

C S

Grid Fabric

Resource

MAGOG

Client/Server

('servent')

GOG 

Node

Internet, Web,

GOG

Deal

is

struck

SLA

is

written

DealBee

is

born
+ +

Tra
ck

 o
f

DealB
ee

On completion
EndBeeis born

Pulse of

BidBeesSwarm of

AskBees

O
n 

co
m

pl
et

io
n

E
nd

B
ee

is
 b

or
n

Track of

ChekBee

M
onth

ly 
Acc

ount C
le

ara
nce

fro
m

 G
CH to

 IP
S

Figure 1: The MAGOG scenario

A Middleware for Activating the Global Open Grid 40

UKPEW 2008 – http://ukpew.org/



Within the architecture there are one or more interlinked Grid Clearing
House (GCH) entities. These entities are responsible for secure, accurate ac-
counting of the agreements made in the environment and for handling legal
issues such as SLA management and resolution of SLA-related disputes.

A payment service (the IPS entity in Figure 1) is responsible for handling
payment between parties in a deal. Settlement occurs monthly, in accordance
with standard commercial practice.

The process of striking a deal follows a standard bid and ask approach similar
to that used in stock markets. The analogy of bees is used to illustrate the
‘swarms’ of data packets that are sent out containing the bid and ask messages
and the various other packets sent during the agreement process.

An entity wishing to sell resource capacity sends out a swarm of AskBees.
These go out across the network, traversing the various links available to them.
An entity wishing to purchase resource capacity sends out a swarm of BidBees.
As the Bees pass through MAGOG nodes, they are handled by the MAGOG
stack (illustrated in Figure 2).

Each MAGOG node runs an implementation of the MAGOG stack. The
lower two layers of the stack use protocols and utility packages specific to a given
MAGOG deployment platform, the upper layers are platform independent and
are the same in all deployments. The bottom two layers provide transport and
security so that packets are secured and have a means to be transported over
the underlying open network (the Internet).

The third level of the stack is where matchmaking takes place. Bids and
asks are resolved at this layer. Incoming bid and ask packets are compared with
each other and with other packets that have passed through the node recently.
A copy of incoming bids and asks is stored for later comparison with subsequent
incoming bids and asks, while a copy of each incoming bid or ask is forwarded
back onto the network to move on to the next node in the network (providing
its TTL has not reached zero).

When a bid and ask match, a deal is made. At this point, level 4 of the
stack takes over. A deal results in the generation of a ChekBee, a packet that
is securely transmitted to the payment service to ensure payment is remitted
for the deal. In order for the deal to be sealed, a DealBee must reach the Grid
Clearing House (GCH). The DealBee is created on receipt of a confirmation
from the IPS that payment is possible. The check against the IPS does not
result in any funds transfer. It is a credit check that ensures all entities involved
in the deal are genuine and that the purchaser has the ability to pay the agreed
sum. To denote satisfactory completion of the transaction after resource usage
has taken place, both parties must send an EndBee to the GCH.

3.1 Service Level Agreements

Service Level Agreements are an extremely important aspect of the MAGOG
environment. An entity wishing to obtain access to a resource bids for some
required capacity and usage terms. An entity offering a resource broadcasts
an ask stating the availability of the resource and usage terms. SLAs provide a
contract that formalises the agreed usage terms when a deal is made. SLAs may
cover a large number of properties but key issues are ensuring that consumers
are provided with the performance and job priority that they have requested. If
a user wants access to an execution resource of a given performance in 5 minutes
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Figure 2: The MAGOG stack.

to carry out a job that will take 1 hour, obtaining access to a faster resource,
but with a lower job priority, meaning that the job does not start for 12 hours
is not satisfactory. Such requirements need to be encapsulated within an SLA.

There may be incentive for dishonest providers to offer unrealistic SLAs in
order to gain business that they would otherwise lose to more reliable providers.
In most cases, this can be detected as part of the verification carried out when
a deal is made. A matching bid-ask pair move to the potential provider’s re-
source(s) where identity verification and credit checking take place. Additional
checks on reservation databases can be made to ensure that the claims made by
an ask packet relate to genuinely available resource capacity. Nonetheless, SLA
specification should be supported by a suitable means for dispute resolution in
the event that an SLA is violated. If the complete process of deal making, SLA
agreement and dispute resolution can be handled programmatically in all but
the most complex cases, this allows for an environment where interaction be-
tween providers and consumers is optimised and should result in a larger number
of deals taking place within the market.

The use of reputation mechanisms whereby parties in a deal can rate their
level of satisfaction with the service or product provided can help to enhance
the SLA process. Consumers rate the quality of various transaction properties
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and this information can then be used to help other consumers select an entity
to agree a deal with in future transactions. It should be noted that while
reputations provide a method to assist with identifying rogue traders, they can
also be used by business rivals to discredit each other by filing false information
on a provider’s Quality of Service (QoS) and such issues must be taken into
account when using reputation information.

3.2 Payment

Payment requires a secure system that allows details of necessary funds trans-
fers to be recorded within the MAGOG network. This is accomplished using the
MAGOG Chek, Deal and EndBee messages. All these messages must be secure,
encrypted messages. When a deal is made as the result of a bid and ask match,
a ChekBee is sent to the payment service (IPS) to verify the identity of the
parties involved and the credit rating of the consumer. This encrypted message
is digitally signed by all parties involved in the transaction and the digital signa-
tures can be used to verify, beyond reasonable doubt, the identites of the parties
involved in the deal. If the identity and credit checking succeed, a DealBee is
generated and sent to the Grid Clearing House providing a storable record of
the agreement made between the provider and consumer. This message is again
digitally signed by all parties involved in the transaction denoting acceptance
of the agreed details of the deal and SLA that are encapsulated within the deal
message. The agreed resource usage takes place and, once completed, an End
message is sent from each party involved in the deal to the Grid Clearing House
to confirm completion of the deal. A transfer of funds has not yet taken place.
At some point in the future, the Clearing House carries out an account clearance
process, sending details of all transactions that have taken place in the previous
month. The payment service takes this information and clears funds between
all entities as necessary in order to settle payment for all deals that have taken
place.

4 Implementation Techniques

Implementation of the MAGOG framework is yet to begin, however various
techniques have been considered for the development of the framework. Each
node that takes part in the MAGOG environment will need to run an imple-
mentation of the MAGOG middleware stack. This is a small application that is
described in more detail in Section 4.2. The packets of data that are transmit-
ted between nodes need to be small, but also need to contain sufficient data to
specify a node’s requirements or offer – the bid or ask. The use of XML has been
considered as a suitable way of describing this information in a platform inde-
pendent manner that is easily processed. XML is somewhat verbose, however
there are other ways to represent XML content for more efficient transmission
and this may present a solution that makes XML viable. JSON (JavaScript
Object Notation) [3] is a potential alternative that offers a more lightweight
solution to transmission of data and could be suited to the representation of
MAGOG data packets.

The data packets are generated at level 4 of the stack and pass down through
the lower layers for transmission out onto the network. At level 2, the data is
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prepared for transmission. This includes tasks such as message compression or
altering XML content for more efficient transmission and the addition of security
measures. While transport layer security may be used to secure data on the wire,
MAGOG requires message level security for all packets due to the sensitivity of
data that they may carry. This may be provided through security specific to a
particular messaging model, for example if using Web Services, WS-Security [5]
provides ideal message level security, or it may be provided through a standard
encryption module within the MAGOG stack using an algorithm such as AES.
Messaging is discussed in more detail in Section 4.1.

The need to ensure that messages are not tampered with means that the
MAGOG stack digitally signs all bid and ask packets that are created in addition
to payment and deal related packets. This ensures that a receiver of a packet can
tell, beyond all reasonable doubt, which node generated the packet. Traceability
can be further enhanced by adding an audit trail that involves every node that
handles a packet attaching a further digital signature created using the handling
entity’s private key. This ensures that it is possible to reliably identify every
node that has handled a packet but adds overhead to the system. Profiling
of the signing process will be required to see how significant the overhead is
and whether the process can be optimised to support deployment of the system
involving potentially hundreds of thousands or even millions of nodes. Using
standard X.509-based digital signatures may be acceptable but this requires that
all MAGOG nodes are issued with a personal X.509 certificate that is signed by
a trusted Certificate Authority. The potential use of certificates by all nodes
needs to be investigated further before a decision is made on this element of the
implementation.

Given that wide uptake of MAGOG is necessary to provide a liquid mar-
ket with sufficient providers and consumers, the barriers to taking part in the
system must be low. Installation of the MAGOG middleware stack must be a
simple and efficient task that can be handled by relatively non-technical users.
Highly reliable operation of the middleware is important to ensure that market
participants are not deterred from using the platform once it is running.

4.1 Messaging

Messaging protocols are used to transmit information between MAGOG nodes.
The messages transmitted between nodes represent bids or asks for resource
capacity, or network configuration messages that may be broadcast around the
network to optimise network organisation or bidding patterns. Message for-
mats use a platform independent data representation such as XML so that the
message content is transport agnostic.

Nodes may support multiple messaging formats to increase the flexibility for
use of the MAGOG infrastructure in environments where different messaging
formats are preferred. Figure 3 shows an example network structure where node
B is able to send and receive messages using three different messaging protocols,
JMS, RMI and SOAP over HTTP (Web Services). Node A transmits an ask
onto the network to offer some resource capacity and Node F transmits a bid.
The double message flooding architecture results in the bid and ask messages
being evaluated at Node B and a deal being made. While support for several
different messaging formats in a single node is likely to be uncommon, this
example is used to illustrate the flexibility of the MAGOG architecture allow-
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ing development of implementations of the MAGOG stack supporting different
messaging environments.
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Figure 3: Communication between nodes using different protocols.

4.2 MAGOG Daemon

The MAGOG Daemon is the service that must run on a node that is to interact
within the MAGOG environment. The daemon listens on one or more ports in
order to accept messages in one or more supported messaging formats and pro-
vides an implementation of the MAGOG stack shown in Figure 2. The daemon
stores incoming messages and then broadcasts them on to other known nodes
within the network. This forwarding may be through direct unicast transmission
to a list of a small number of known nodes, or using multicast to take advantage
of the networking infrastructure to broadcast the messages to a greater number
of MAGOG nodes listening on a given multicast address.

Received messages are stored in a local cache for resolution against other
recently received messages. The resolution process involves evaluating each
message in the cache against every other looking for potential deals. If a deal
is made, the daemon is capable of generating credit checking and audit pack-
ets that are sent to the Payment Service (IPS) and Clearing House (GCH)
respectively, using clients for these two services that are embedded in the dae-
mon service. Figure 4 shows a schematic of the MAGOG daemon that sits on
a resource between the local operating system and any Distributed Resource
Manager or Reservation Service. When a deal is made for use of the local re-
source, either locally or at a remote location, the local MAGOG middleware
instance is notified and communicates the details of the deal that will result in
local resource access to the local DRM system or reservation manager to ensure
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that the resource is reserved for the time slot of the deal. This notification can
be initiated by the BidBee of a bid-ask pair that arrive at a resource shortly
after a bid-ask match has been made for its use.

MAGOG-Enabled Resource

MAGOG Daemon

DRM Software / Reservation Service

Operating System

Messaging

Bid/Ask 
Matching

IPS 
Client

GCH 
Client

GOG Network

Figure 4: The MAGOG daemon on a MAGOG-enabled resource.

5 Market Behaviour

In [1], Torsten Eymann et al. state that catallaxy is derived from the Greek
‘katallatein’, meaning ‘to barter’ and ‘to join a community’. The catallaxy
is a state of coordinated individual actions, brought about by the bartering,
communicating and relationship-building activities of economic agents, leading
them to achieve an unplanned community goal. This ‘spontaneous order’ of
stable relative prices emerging from numerous transactions in a competitive
market is Friedrich von Hayek’s 1930s take on Adam Smith’s 1780s ‘invisible
hand’. Prices are not only rates of exchange between goods, but also an efficient
mechanism for communicating information between localities and communities.
In a complex, uncertain environment, economic agents are never able to predict
the precise consequences of their actions, and it is this existential ignorance that
actually makes the price system work.

The spontaneous order can never be designed by a perfectly informed planner
who simply ‘gets the prices right’, because the pattern of pricing actually evolves
as a result of lack of knowledge. Most of this knowledge is generated and
used during the process of adjustment to equilibrium, which cannot occur in
the alternative economic paradigm of “general equilibrium”, proposed by Leon
Walras in the 1870s. This is because the Walrasian auctioneer forbids ‘false
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trading’ (i.e. deals struck at non-equilibrium prices) until open outcry bids and
asks reveal the economy’s equilibrium vector of relative prices. Yet false trading
is the very process that drives the catallaxy to emerge: the market process is
necessarily one of incessant trial-and-error, according to Hayek.

The operation of the MAGOG middleware needs to be tested to ensure that
separate bid and ask prices coalesce into ‘deal prices’, which then acquire the
stability predicted by the catallaxy paradigm. Some initial modelling has been
carried out in [2]. The aims are to ensure that the bid and ask process operates
successfully and that from a given state of supply and demand, an equilibrium
is reached.

6 Conclusions and Further Work

We have presented a technical view of the MAGOG middleware that has been
developed as a radical alternative to standard Grid middlewares. MAGOG
is expected to offer significant scalability advantages over existing middleware
platforms in addition to superior solutions for management of legal and payment
issues within a market-based Grid environment.

Initial simulation work on the MAGOG platform is ongoing and we plan a
more substantial stage of simulation followed by prototyping the platform and
ultimately producing a full implementation of the system for deployment over
a global Grid testbed such as the PlanetLab system.
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The performance of locality-aware topologies for
peer-to-peer live streaming

Richard G. Clegg ∗, David Griffin†, Raul Landa‡,
Eleni Mykoniati§and Miguel Rio¶‖

Abstract

This paper is concerned with the effect of overlay network topology on the
performance of live streaming peer-to-peer systems. The paper focuses on the
evaluation of topologies which are aware of the delays experienced between dif-
ferent peers on the network. Metrics are defined which assess the topologies in
terms of delay, bandwidth usage and resilience to peer drop-out. Several topology
creation algorithms are tested and the metrics are measured in a simple simulation
testbed. This gives an assessment of the type of gains which might be expected
from locality awareness in peer-to-peer networks.

1 Introduction
This paper investigates the impact of the topology of overlay networks on performance
metrics for peer-to-peer live streaming. An overlay network is a conceptual network
of peers which exists on top of the standard Internet. Peers on the overlay network
connect according to given rules to form a topology. There has been recent research
interest in making overlay networks locality-aware for so that peers may more easily
find “nearby” peers. In this paper we undertake a systematic evaluation of a number of
alternative locality-aware topology construction methods (and some random methods
for comparison).
The situation considered is that of a single node, known as the peercaster wishing
to distribute live streaming content through a peer-to-peer network. The peers in the
network wish to download this content reliably and with a low delay between the peer-
caster and themselves. The challenge of distributing live content is somewhat different
to that of distributing recorded content on demand. A major difference is that delay is
important to optimise (so that peers can view streams as “live” as possible) whereas
throughput only needs to be large enough to view the stream (a peer cannot continue to
download at faster than the rate the stream is broadcast).
A number of strategies might be considered for forming such topologies for live stream-
ing. Minimising delay to the peercaster might be one strategy. Connecting to close (in
terms of delay) nodes might be a related strategy. Another aspect to consider is whether
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it is important to aggressively minimise delay or closeness by making as many connec-
tions as possible to the lowest delay/closest node or whether it might be preferable to
have a range of connections. The topologies formed are tested against several metrics
which attempt to assess whether the topology is good at reducing delay, resilient in the
case of peers dropping out and whether it ensures that the bandwidth is used fairly.

1.1 Background and related work
Distributing content over an overlay network has been the subject of numerous stud-
ies in recent years. Most of this research has been concentrated on non-live content
where the emphasis is on increasing throughput rather than reducing delay. In early
approaches like SpreadIt [4], a multicast tree is built by centralised logic running at
the data source. Upon the arrival of a new node, the source is contacted to appoint an
unsaturated node to be the parent of the new node. When the smart-placement pol-
icy is in effect, the parent node is also selected to be close to the new node, where
proximity is inferred with traceroute messages. More recently, Bos [7] proposed a
method which constructs a data distribution tree containing the Euclidean Minimum
Spanning Tree, where the distance in the Euclidean space represents the network delay.
A subset of stable and high capacity nodes are elected to become super peers. Super
peers are interconnected to form a Yao graph, a structure which contains the Euclidean
Minimum Spanning Tree. Normal peers attach directly to the closest super peer. The
source routed multicast tree is built over the super peers topology based on the compass
routing protocol.
The departure of a node in single distribution tree topologies results in complete loss
of connectivity for all the nodes in the underlying subtree. To overcome this problem,
several studies investigate streaming the data over a forest of multicast trees, each of
which carries only part of the stream. Coopnet [8] is a forest-based streaming approach,
where the authors identify a tradeoff between efficiency in terms of locality and path
diversity required for resilience to node departures. Upon addition of a new node, the
source returns a significantly large set of candidate parent nodes to ensure diversity. As
an optimisation the candidate parent nodes are selected, similarly to SpreadIt, so that
are they are nearby the newly added node.
Techniques for constructing trees typically assume global knowledge and at least one
interaction with the source. Alternatively, overlay topologies can be constructed with
local knowledge, where the connections are determined by each node and the data flow
may take many alternative and potentially overlapping paths. In [9] a technique for
clustering nodes to bins based on their locality is proposed. As a case study of this
technique, the BinShort-Long overlay construction method is presented, where each
node connects to k/2 randomly selected nodes from within its cluster (bin) and k/2
random nodes from anywhere in the system. A similar technique is proposed in [1] as
an improvement for the BitTorrent protocol. The clustering here is done primarily to
distinguish between nodes located in the same ISP, and nodes in different ISPs. Out
of the total BitTorrent peers discovered by a new peer through the local tracker, all but
k are selected to be local peers, with typical values 35 for total peers and 1 for the
k external peers. This is done to reduce the traffic over the inter-domain links while
still maintaining enough connections with external peers to receive the data. Finally,
in [10] the authors formulate the Minimum Delay Mesh problem and prove that it is
NP-hard. They propose a heuristic for constructing a shallow (low number of hops)
and locality-aware (low delay at each hop) overlay topology. In order to minimise the
number of hops, nodes with higher capacity need to be connected closer to the source.
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The selection of the nodes to establish connections with, is done after calculating the
power of each node, as a function of the node’s locality and bandwidth availability.

2 Simulation methodology
In order to make the simulation of the overlay tractable it is necessary to abstract away
the network itself and simulate only the overlay. The simulation described here makes
as few assumptions as possible. It is assumed that each node has a fixed delay to every
other node in the overlay (as described in the next section). It is also assumed that
each node has a sufficient download bandwidth to obtain the entire stream and upload
bandwidth to deliver a fixed proportion (which may be more than unity) of the stream.

2.1 Node distributions
Synthetic coordinate systems associate a coordinate with each peer in an overlay net-
work, in such a way that the distance between the coordinates is a good estimate of
some network property measured between the peers, predominantly round trip time
(RTT). This can be achieved efficiently by using a limited set of end-to-end measure-
ments to extrapolate those distances between nodes that were not explicitly measured.
Thus, synthetic coordinate systems use a limited set of measurements to model the
structural properties of the Internet, and then use this model to predict end-to-end prop-
erties (such as RTT) between arbitrary peers.
The first step in the operation of a network coordinates system is generating a dis-
tance graph, where links between peers represent distance measurements. This dis-
tance graph is then embedded onto a space that integrates some of the structural prop-
erties of the Internet. Examples of these include a standard Euclidean space [2], a
Euclidean space augmented with a purely additive coordinate [3] or a hyperbolic space
[11]. The embedding process can be viewed as an error minimization procedure where
nodes are positioned in the space in such a way that the cumulative difference between
the measurements and the embedded distances is minimized. Once this embedding has
been done, and to the extent that the embedding space faithfully recovers the structure
of the Internet for the measure in question, geodesic distances over this space are good
predictors of the actual distances over the Internet [6]. This space will be referred to as
delay space.
In the case of the simple simulation used in this paper, a standard two-dimension Eu-
clidean delay space is used. Let N be the number of nodes in the system excluding the
peercaster. The N + 1 nodes, numbered from 0 (the peercaster) to N are distributed
over the two-dimensional Euclidean space. Each node has a co-ordinate (xi, yi) and
the delay from node i to node j is obtained using the standard Euclidean distance from
(xi, yi) to (xj , yj).
The question then becomes how to distribute the nodes on the delay space. For the
purposes of this paper we use three generation methods to create random node distribu-
tions. In reality, nodes in an overlay network will cluster to some degree, for example,
nodes in the real Internet are more prevalent in some areas of the world than others
(clusters in large cities, particularly large cities with high levels of Internet usage).
In the case of an overlay network based upon nodes wishing to download particular
streaming content, the distribution will be further complicated by whether the content
is of regional, national or global interest as well as what language the broadcast is in.
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For this reason the simulation here is tested against different assumptions about how
nodes might be randomly situated in delay space.
Flat node distribution NF : In this distribution the nodes are flatly distributed in
a square delay space. For each node i, xi and yi are chosen randomly from a flat
distribution in the interval (−D,D). In the simulations given here D = 0.25 seconds
(so the maximum delay between any two nodes is

√
2/2 secs).

Tightly clustered node distribution NT : This distribution simulates a situation
where nodes are grouped into tight clusters. The following procedure is followed until
sufficient nodes have been generated.

1. Coordinates position X,Y is chosen with a flat distribution where X and Y are
chosen from the interval (−D, D).

2. The position (X,Y ) is modified by a small random perturbation (dX , dY ) where
dX and dY are chosen with a flat distribution in the interval (−d, d).

3. Coordinate (X,Y ) is recorded.

4. With probability p go to step 1, otherwise go to step 2.

In this distribution D = 0.25, d = 0.005 and p = 0.01.
Loosely clustered node distribution NL: This distribution is identical to the previ-
ous one but the clusters are more diffuse and contain fewer nodes D = 0.25, d = 0.05
and p = 0.01.
In each of the last two cases, after the distribution is created, the node order is ran-
domised. Node order is important for local topology schemes (see section 3.2). This
reordering prevents nodes being created in a convenient “by cluster” order with nodes
locally close being created together.

2.2 Modelling assumptions
For simplicity it is assumed that each node attempts to download a stream as M sepa-
rate and equally sized substreams – note, however, that this could also be thought of as
simply an abstraction of, say, a chunk-based swarming system with M partners from
whom equal amounts are downloaded. Assume that each node has capacity to down-
load all M substreams and that nodes have upload capacities to upload only a limited
number of substreams.
Each node has associated with it an upload capacity ui which is the number of sub-
streams it can support (for the purposes of bandwidth calculation each substream is
considered to have a bandwidth of 1Mb/s – although the precise unit is unimportant
and of the metrics described, only the bandwidth variance is affected by this). Note
that it must be assumed that u0 ≥ M (in order that all M substreams can be uploaded
from the peercaster itself) and also for the system to scale it is important that ui ≥ M
(the average peer has sufficient capacity to upload all M substreams). An implicit as-
sumption is that system bottlenecks are only at the peers in the network. This may not
always be the case in reality (for example several peers who belong to the same ISP
may share access network capacity in the underlying network).
Nodes will then attempt to connect to at most M other peers in order to download
the complete stream (nodes can download all M streams from a single partner node).
A node i will accept at most ui connections and request up to M connections. The
complete set of connections will be referred to as a topology on the overlay network.
This will be described in the next section.
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For this paper ui will be chosen from a random distribution. In addition u0 will be fixed
since it has such an important role in the network. The values used are M = 4 and
ui is chosen with equal probability from the set {1, 5, 10, 16} – in this simulation no
nodes are complete free-riders although some nodes can only produce 1/4 of a complete
stream. The mean value of ui is 8 so the system easily has capacity for every node to
download the stream. As previously stated u0 is a critical parameter in the system so
u0 = 16 for all simulations – the peercaster is always assumed to have a reasonable
amount of bandwidth. This is to prevent the simulation results being greatly dependent
on this single random selection (a simulation where u0 = 1 might get very different
results from one with u0 = 16 even if all else was the same).

3 Topology generation and assessment
A topology on the network is a directed graph which may have more than one edge
from node i to node j (an edge represents node i sending a single substream to node
j). Let Ii be the number of incoming connections to node i and Oi be the number of
outgoing connections to node i. A valid topology on the network is one where Ii = M
for i ∈ 1, . . . , N , I0 = 0 (every node apart from the peercaster is downloading a
complete stream) and Oi ≤ ui for all i (every node is within its upload bandwidth
limit). In addition there must exist a walk from node 0 to every node i in the network
(every node has a path to download from the peercaster).

3.1 Metrics
Because each node has M independent connections, variants on more usual network
metrics are used here. For example, it is not simply the shortest path from a node to the
peercaster to the node which is of interest but the path length along all paths.
The metrics listed in this session have been created with several considerations in mind.
A “good” topology should have all or most of the following properties.

• Low delay to end nodes – this translates to nodes being able to view streams with
good “liveness”.

• High resilience to churn – a peer-to-peer network is, by its nature, highly dy-
namic. The loss of any single node should not greatly affect the network.

• Diversity of paths – related to the above, an individual peer would want a diverse
set of connections so that the loss of a single intermediate node will not affect
every stream it is downloading.

• Equitable spread of bandwidth – the upload bandwidth requirements in carrying
the stream is spread across all nodes rather than falling unduly on a small number
of nodes.

Let Di(j) be the shortest path delay from node i to the peercaster assuming that the
first “hop” is node i’s jth connection. Let Pi(j) be the set of nodes which connect node
i to the peercaster for its jth connection (not including i and the peercaster itself). If i
connects directly to the peercaster for its jth connection then Pi(j) = ∅. Note that in
pathological cases this shortest path may go back through the node i itself.
Let Vi be the vulnerability of node i to the removal of a single node. This is the number
of streams connecting node i to the peercaster which could potentially be disrupted by
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the removal of a single node (not including the peercaster). It is zero if and only if
every node is directly connected to the peercaster. It is M if the shortest paths Di(k)
go through one node (not including the peercaster) for all k.
Let Si be the vulnerability of the system to the removal of node i. It is, in a sense,
the dual of Vi. It is the total number of streams Dj(k) (where j '= i) which could be
broken if node i were removed from the system.
Single figure metrics (the following metrics produce a single number).

1. Mean minimum delay Dmin =
∑N

i=1 minj Di(j)/N – this is the mean of the
minimum delay from a given node to the peercaster.

2. Mean maximum delay Dmax =
∑N

i=1 maxj Di(j)/N – this is the mean of the
maximum shortest path from a given node to the peercaster.

3. Maximum system vulnerability S = maxi Si/MN – this is the proportion of
routes which could potentially be damaged by the removal of a single node. It
will be one if there is a single node (apart from the peercaster) which can disrupt
every transmission path and zero if there are no nodes which can damage paths
(only possible if every node connects directly to the peercaster). This measure
is similar to finding the node with maximum Betweenness-Centrality [5]. It is a
measure of a worst case vulnerability to churn in the network.

4. Mean node vulnerability V =
∑N

i=1(Vi)/NM – this is mean of Vi over all
nodes. It is a measure of how vulnerable the average node is to churn. The value
is one if every node i can have all M streams broken along the shortest path by
the removal of a single node not including i or the peercaster. The value is zero
if and only if every node connects directly to the peercaster.

5. Bandwidth variance Bv = var (Oi) (for i > 0) – this attempts to assess whether
the system load is split evenly between all nodes. If this is low then all nodes are
using similar quantities of bandwidth but if it is high then some nodes are using
large amounts of bandwidth and some little. Nodes with zero upload capacity
are ignored by this metric.

3.2 Topology generation methods
The topology generation methods are split into two types: global and local fixed.
Global methods begin with all peer nodes present in the system. Connections can be
chosen (at least potentially) with regard to every other node present in the network.
Such methods are unrealistic in a large-scale real peer-to-peer system but may provide
insight into the performance levels that can be expected from a topology. This can be
thought of as a complete information godlike view of the system and its connections.
Local fixed methods have peers appearing on the network in sequence, peercaster first.
Each peer chooses all M connections before the next peer joins the network. (The first
peer present must connect M times with the peercaster). Such methods are practical
for real peer-to-peer networks (although they may involve more information than could
be easily obtained from a real peer-to-peer network).
An obvious extension to this would be local reevaluating methods in which nodes ap-
pear in a fixed order and initially get their connections using local methods but may
subsequently change connections as new, better, nodes appear. These topologies will
be studied in further work.
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3.3 Global topology generation methods
Random global topology T GR – this can be thought of as the base “worst” case
for global topology generation. This first algorithm is described in detail despite its
simplicity so that the reader can fully understand the implementation. Subsequent
topology algorithms will be described fully but in a less verbose manner. Let S be
the set of nodes which do not yet have M substreams S := {i ∈ 1, . . . , N}. Let C be
the set containing only the peercaster (node 0) C := {0}.

1. Randomly pick nodes i from C and j from S.

2. Make an outgoing connection from i to j. Set Ij := Ij + 1 and Oi := Oi + 1.

3. If j /∈ C then C := C ∪ {j}.

4. If Oi = ui then C := C \ {i}.

5. If Ij = M then S := S \ {j}.

6. If C = ∅ then an invalid topology has been reached. Begin the algorithm afresh.

7. If S = ∅ then all nodes have been connected. Otherwise go to step 1.

Closest first global topology T GC – This algorithm attempts to minimise delays by
connecting “close” nodes first. Let C be the set of nodes which are “connected” (can
trace a route from the peercaster) and have capacity to spare (initially C = {0}). Each
node i which does not yet have Ii = M maintains a record of the node in the set C \{i}
to which it has the smallest delay. The node n makes a connection to its closest node
j. The node n is added to C if it is not already there. The node j is removed from C if
its capacity is filled. The process continues until all nodes are connected with Ii = M
Small world T GS – This topology has M − 1 connections picked according to the
rules in T GC and one node picked randomly according to the rules in T GR. The idea
being to form a small world type network with mainly local connections but one global
connection.

3.4 Local fixed topology generation methods
Local random T LFR – In this algorithm, the nodes appear in order and connect to
random nodes which have spare capacity. As it appears a node picks one node from the
set of nodes with spare capacity at random and connect to it. This process is repeated
until the node has M connections.
Local closest first T LFC1 – In this algorithm, the nodes appear in order and each
node, as it appears, makes connections to the closest node to it (in terms of delay) until
either all M connections are made or that node runs out of upload capacity (in which
case the next closest node is used and so on).
Local closest with diversity T LFC2 – This topology is the same as T LFC1 but
the nodes attempt to connect to M different other nodes if possible, if no such nodes
are available then the nodes connect to the closest node with which they only have one
connection and so on. (For example the first node to appear must by necessity make all
M connections to the peercaster itself).
Local minimum delay first T LFD1 – This topology is formed by each node con-
necting to that node with capacity to spare from which it can get the lowest shortest
path delay (in the same way as T LFC1 did).
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Local minimum delay with diversity T LFD2 – This topology is the same as
T LFD1 but with the modification that the node attempts to connect to M different
nodes if possible.
Local small world T LFS – This topology has M − 1 nodes picked according to
T LFC2 and one node picked randomly according to T LFR.

3.5 Criticisms of the metrics and topologies
While the selected metrics are intended to be proxies for the properties declared at the
start of this section, it is important to remember that they do not have a simple and direct
relationship with those properties. For example, the delay based metrics are intended
as a proxy for the the delay from the peercaster to the end user. However, the actual
delay experienced by the user will not directly relate to the metrics specified here. In
a substreaming system for example, this would depend upon exactly which nodes that
particular substream travelled through. This itself might be subject to optimisation
separately from topology. It would also depend upon exactly where in the stream the
particular peer chose to upload from. The delay would also depend on choices made by
the peer since there would be a trade off between delay and reliability in such a system
(a peer may decide to allow a time buffer to allow for future jitter in downloading a
stream).
Because the focus of this paper is on the effects of topology rather than on the effects
of packet scheduling and buffering strategies it was decided to use simpler simulations
and metrics which are only proxies for the ideal measurement.
The topologies considered are only a small subset of the possible topology construc-
tion methods. A moment’s consideration will come up with many more possibilities,
however, the number of results presented in this paper is already large. Future work
will investigate different topologies.
Of the topologies considered, an obvious criticism is that they all have complete and
accurate knowledge of the system. This approach is taken because the aim of this work
is to develop an optimal strategy for real peers to implement. In the case of the local
topologies this is the system “to date” and in the case of the global topologies this
is the entire universe of peers. No “churn” is accounted for, nodes only enter. Both
topologies have potential problems with the possibility of connecting up unrealistic or
impossible networks. In the case of the global topologies, topologies can be generated
with a minimum cut less than the stream bandwidth. This problem will be addressed
in subsequent work. In the case of local topologies it is possible that the nodes could
appear in an order which made connecting the network impossible. For example, with
M = 4, if nodes with u0 = 4, u1 = 1 appeared then node 2 could not find four upload
connections. This problem is addressed by ensuring that the node order is such that
valid local topologies are always possible.

4 Results
Figure 1 shows the effects of the node distribution algorithms. The scale is delay in
milliseconds.
It is useful to show an example of topology creation. A simple situation with ten nodes
is shown with the following upload capacities (beginning with the peercaster, node 0)
(16, 1, 5, 5, 10, 10, 10, 16, 1, 5).
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Figure 1: Flat NF (left) and loosely clustered NL (right) node distributions of 1000
nodes.
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Figure 2: Ten nodes connected using the topologies global random T GR (left) and
global closest T GC (right).

Figure 2 shows two of the global topologies, node 0 is the peercaster. The arrows
indicate the direction in which data is transmitted. As might be expected the global
closest topology T GC has many node pairs with a number of links in common. For
example, all the upload links to node 5 come from the same node (the peercaster). This
is because the first connection made is from node 0 to node 5 and after this connection
node 5 is still the closest node to the set of connected nodes. Node 1 can only supply
one upload stream because of its bandwidth constraints. In this topology nodes 1 and 6
mutually upload (this is entirely possible in a live streaming system). It should also be
noted that the T GC topology is unrealistic in this case. The single link from node 5 to
node 1 is a bottleneck in the network. Topology T GR as might be expected has much
more diversity in connections.
Figure 3 shows the two local topologies T LFC1 and T LFC2. As can be seen, in
T LFC1 it is common for a pair of nodes to have several connections. Indeed this
pattern is only broken because of nodes running out of upload capacity (for example
node 1). In topology T LFC2 close connections are still made but nodes choose diverse
connections. Because of the nature of the local topologies, node 1 has to connect to
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Figure 3: Ten nodes connected using the local closest topologies T LFC1 (left) and
T LFC2 (right).

node 0 only (because at this point only node 1 and node 0 are in the system). Similarly
node 2 can only connect to node 1 or node 0. The fact that each node has full upload
bandwidth before other nodes can connect to it ensures that no unrealistic topologies (in
the sense of the previous section) can be constructed using the local topology methods.

4.1 Experiments performed
For one of the node distributionsNF , NL andNT 10,000 nodes are generated. Topolo-
gies are constructed from 100, 200, 500, 1,000, 2,000, 5,000 and 10,000 of these nodes
(the nodes randomly chosen from the 10,000). To check the stability of each metric,
each set of topology, node distribution and number of nodes is repeated ten times. The
mean value of each of the metrics is calculated for the set of ten experiments and a 95%
confidence interval is also obtained.
The majority of the results are presented with error bars representing the 95% confi-
dence intervals. Note also that small offsets are introduced in the x-axis in order that
the error bars do not overlap.

4.2 Delay metrics
Figure 4 shows Dmax for the topologies on the flat node distribution NF . Of the global
topologies, T GR is, as might be expected, the worst performing and scales badly with
max delay increasing rapidly with the number of nodes in the system. T GC performs
better but still does not scale well. T GS is the best performing and its scaling seems
extremely good, indeed surprisingly so.
In the case of the local topologies, figure 4 shows that T LFC2 has the lowest delay,
with T LFS , T LFC1 and T LFD2 also performing well. Bad performers are T LFR

(the random local topology) and, perhaps more surprisingly T LFD1. A possible ex-
planation for the latter is that each node as it arrives attempts greedily to get its lowest
delay to the peercaster. The earliest nodes to arrive connect directly to the peercaster.
Once the peercaster bandwidth is exhausted a second wave of nodes has a high like-
lihood of connecting to any of those nodes close to the peercaster. Low delay nodes
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Figure 4: Dmax for global (left) and local topologies (right) on a flat node distribution
NF .

would quickly find their upload bandwidth used up. The T LFD1 topology reduces
this effect somewhat by insisting that nodes upload from a diverse selection of other
nodes.
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Figure 5: Dmin for global (left) and local topologies (right) on a flat node distribution
NF .

Figure 5 shows the same experiment as figure 4 but uses the minimum delay metric
Dmin. The graphs are essentially similar but T GR and T LFR perform better than
previously. This is almost certainly a result of the fact that their random nature is likely
to make the worst connection much worse than the best connection they experience.
For the local topologies, T LFS , T LFD2 and T LFC2 are the best performing.
Figure 6 shows the same results as figure 5 but with the tightly clustered node distribu-
tion NT . The differences between the graphs are not too great. The clustering seems to
lower the minimum delay for most measures, perhaps because there are always some
nodes extremely close to the peercaster. The only policy which appears significantly
affected is T GC which performs consistently much better in the presence of clustering.
Note especially that the topology has changed character from dramatically increased
delay as the number of nodes increases to almost no increase in delay as the number of
nodes increased. This is explored further in section 4.6.
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Figure 6: Dmin for global (left) and local topologies (right) on a tightly clustered node
distribution NT .

4.3 Vulnerability metrics
Two vulnerability metrics were defined in section 3.1. The first S attempts to assess the
vulnerability of the system to the removal of a single node. The second V attempts to
measure the vulnerability of the average node to the removal of some other node from
the system.
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Figure 7: Maximum system vulnerability S for global (left) and local topologies (right)
on a tightly clustered node distribution NT .

Figure 7 shows the system vulnerability to node removal for various topologies. Of the
global topologies the T GC is by far the most vulnerable. The random topology T GR

is by comparison very resilient although the small world topology T GS is almost as
resilient. For the local topologies the picture is less clear. The delay based topology
T LFD1 is the least resilient. This is because this topology will tend to arrange itself
along low delay trees. The introduction of a requirement for diversity in connections
in T LFD2 reduces this vulnerability somewhat. It should be noted that most of the
confidence intervals in this graph are very large. The system vulnerability can change
greatly with each run using the same parameters.
Figure 8 shows similar but not identical results using the metric V which attempts to
measure how vulnerable each node is to the removal of single nodes from the network.
In this case, T GC performs terribly as does T LFC1, T LFD1 and to a lesser extent
T LFC2. The random topologies (T GR and T LFR) obviously do well as these are
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Figure 8: Mean node vulnerability V for global (left) and local topologies (right) on a
tightly clustered node distribution NT .

unlikely to have single points of failure. The small world topologies T LFS and T GS

also perform relatively well, probably due to their random elements.

4.4 Fairness metric
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Figure 9: Bandwidth variance Bv for global (left) and local topologies (right) on a
tightly clustered node distribution NT .

The results on bandwidth variance are shown in figure 9. A low variance would in-
dicate nodes sharing upload capacities “fairly” (although this does not account for
node capacities – no clear picture emerged when metric involving proportional band-
width was used). The topology T GC has a higher bandwidth variance than the other
global topologies. However, the worst performing topologies are clearly T LFD1 and
T LFD2. This is because those topologies are very likely to efficiently exploit peers
with low delay connections to the peercaster and such peers are likely to have their
entire bandwidth exhausted.

4.5 Tradeoffs in metrics
Figure 10 shows how vulnerability interacts with delay. The plot on the left is of V
versus Dmax and on the right is S versus Dmax. Each point on the plot is for the mean
of ten runs for a given topology and a given node distribution. As can be seen, the
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Figure 10: Mean node vulnerability versus V versus Dmax (left) and max system vul-
nerability S versus Dmax (right) for all topologies (using all three node distributions).

results are not particularly sensitive to the node distribution used apart from for the
topology T GC .
The best performing topologies are those to the bottom left of the graphs. For the
system vulnerability measure S then the best topologies seem to be T LFC2 and T GS

and to a lesser extent T LFS and TLFC1. For the node vulnerability measure V then
the best topologies seem to be T GS or, if resilience is very much more important than
delay, T GR. Of the local topologies, T LFS , T LFD2 and T LFC2 perform best with
T LFR being preferred only if delay is much less important than network resilience.

4.6 The effects of the node distribution
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Figure 11: Maximum delay Dmax versus number of iterations for topology T GR (left)
and TGC (right) showing the effects of node distributions NF , NT and NL.

Figure 11 shows the effect of node distribution on delays. The plots are of the number
of nodes versus the maximum delay Dmax for a given topology. Each line represents
one of the three methods for creating a node distribution NF , NT and NL (a flat distri-
bution, a tightly clustered distribution and a loosely clustered distribution). The differ-
ences between the distributions (as seen in figure 1) is quite marked. As can be seen,
for the random distribution T GR the impacts of the node distributions on the metrics
chosen were minimal (in almost all cases the 95% confidence intervals overlap). This
seems to be a fairly typical result. This can be seen by the fact that in figure 10 the
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three points for a given topology are almost always clustered together indicating that
the topology is of much greater importance than the choice of node distribution used.
The exception is for the T GC topology. This topology is its closest connected neigh-
bour from all the nodes which will ever enter the system. This seems to be the only
case where node clustering makes a marked difference to the results used. However, it
should be noticed that even in this case the 95% confidence intervals overlap for most
experiments.

5 Conclusions and further work
It is clear that much work remains to be done on this topic, however, some clear con-
clusions can be drawn. Naive policies like “connect to my closest peer” are not as
effective as might be thought in reducing delay to the peercaster. This can produce
systems which have a high delay from the peercaster to the peer and also with a high
vulnerability to churn. This problem can be mitigated by the so-called “small-world”
topologies used here where most connections are local but some are distant.
For the delay measures investigated, some of the topology methods used seem to scale
very well indeed with system size. The global small world topology seemed almost
delay invariant as the number of nodes in the system increased. Of the local topologies,
the topology which tried “hardest” to minimise delay (with nodes aggressively using all
the bandwidth of nodes to which they had the lowest delay connection to the peercaster)
fared surprisingly badly both in terms of delay and in terms of vulnerability.
With global system knowledge the small world topology (three close connections and
one random) performed extremely well in terms of both delay and vulnerability. For the
local topology policies the local small world policy or the local closest with diversity
policy seemed to offer the best trade off.
An interesting outcome of this research is that, for the parameters used here, the sys-
tem seemed extremely insensitive to the node distribution used. The node distribution
policies were chosen so that the nodes were laid out in a delay space of approximately
the same size. However, only for the global closest topology policy were significant
differences found in metrics due to a change in the node distribution. This is impor-
tant since, if this conclusion is more widely applicable, it could free modellers from
the (possibly extremely time consuming) task of attempting to validate a peer-to-peer
model against a realistic distribution of global delay.
Much remains to be done to complete this work and there are many further avenues
which could be investigated. The metrics used could be improved (although at the ex-
pense of computational complexity). The global topology methods used could some-
times generate unrealistic topologies (in the sense that a max-flow/min-cut would find
that the network had a max flow less than the stream total bandwidth). This could
be improved by adding constraints on the global topology creation (a node could only
have n uploads if it already had n downloads and had capacity for at least n uploads).
There are many other simulation parameters which could be investigated. The choice
of four streams here and the distribution of upload capacities was somewhat arbitrary.
However, it is difficult to run simulations with too many “degrees of freedom”. A
repeated experiment with only one node distribution topology but differences in the
distributions of upload bandwidths might generate some interesting results. Indeed a
large problem with this research is that the state space to explore is extremely large
even in this simple simulation.
An obvious next stage is to allow the local topologies a “reevaluation” stage. That is
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to say, that after peers had chosen their upload connections, a second selection process
would allow peers to swap to a different uploader. This adds complications since it
might be desirable to allow a peer to “displace” another downloader, however, this
might create problems if the displacement caused other problems with the topology
(for example by cutting off sections of the network from the peercaster).
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Terminating Passage-Time Calculations
on Uniformised Markov Chains

Allan Clark∗ Stephen Gilmore†

Abstract

Uniformisation[1, 2] is a key technique which allows modellers to ex-
tract passage-time quantiles/densities which in turn permits the plotting
of probability density and cumulative distribution functions. Uniformisa-
tion converts a CTMC (Continuous-Time Markov Chain) into a DTMC
(Discrete-Time Markov Chain) with equivalent semantics. This can be
used to calculate the probability of completing a passage within a given
time t by calculating the probability of completing the passage within a
number of iterations, n, of the DTMC and then calculating the probabil-
ity that the nth iteration is performed within time t. However to calculate
the passage-time quantiles we desire we must theoretically perform this
calculation for values of n from zero to infinity and sum the probabili-
ties. This can be approximated by calculating for values of n from zero
to some finite value if we know that larger values of n will yield negligible
probabilities and hence add nothing significant to the summation. This
paper discusses two important conditions which ensure that the approxi-
mation is appropriate while also reducing the amount of negligible values
calculated.

1 Introduction

Passage-time quantiles are often desirable measurements to be made from a
performance model. In the case of a passage-time measurement we measure
from a set of source states to a set of target states. A passage-time quantile
is simply a point taken along the cumulative distribution function (cdf) of the
passage in question. The cumulative distribution function maps time (usually
along the x-axis) against the probability of completing the passage at or before
that time. This allows the modeller to answer such questions as: “What is the
probability that a request is responded to within 4 seconds?” It is also possible
to plot the probability density function (pdf) where the cdf is the integral of
the pdf. The pdf then maps time against the probability density of completing
the passage at exactly that time.

This paper describes the calculation of passage-time quantiles/densities from
a CTMC based model. The technique used is known as uniformisation – though
it is sometimes called randomisation. This paper is chiefly concerned with the
steps which follow the actual uniformisation of a CTMC. This is the process

∗LFCS, University of Edinburgh, a.d.clark@ed.ac.uk
†LFCS, University of Edinburgh, stg@inf.ed.ac.uk
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of extracting from the uniformised Markov chain the probabilities which we
desire. For this reason our first example concerns a CTMC which is already in
a uniformised state due to all of the rates involved being equal.

The paper is organised as follows; in Section 2 we give an overview of the
whole process of uniformisation. Section 3 then introduces an example uniform
CTMC which is used to analyse the process of extracting our quantiles from
the uniformised Markov chain. Section 4 compares with existing approaches,
Section 5 details some finer implementation points and finally in Section 6 we
conclude.

The major contribution of this paper is the identification of two properties
which allow the accurate halting of the calculation of quantiles. However this
paper is sufficiently detailed to serve as an introduction to the key technique of
uniformisation in general.

2 Uniformisation

This section details the steps used to derive the cdf (and/or pdf) from a model
represented as a CTMC. We first detail the prerequisites:

• The CTMC may be represented by the generator matrix Q. The generator
matrix is an n x n matrix where n is the number of states in the Markov
chain. Each row corresponds to one state and the value in one cell of a
row corresponds to the rate at which the Markov chain may transition
from the state given by the row number to the state given by the column
number. The diagonal values are given by subtracting from zero the sum
of the other values in the row. Hence if we write r(i, j) to mean the
rate at which the Markov chain may transition from state i to j then the
generator matrix Q is written as:

Qi,j =
{

r(i, j) : i != j
0− (

∑n−1
k=0 r(i, k)) : otherwise

This requires that for any state i, the rate r(i, i) is zero – this condition
is usually stated by insisting that the model contains no self-loops.

• The generator matrix may be solved to obtain the steady-state probability
distribution π where πi is the long-term probability of being in state i.
This requires that the model be deadlock-free.

• The set of source states S and the set of target states T . The probability
at time t that we compute is the probability of moving from any of the
states in S to any of the states in T within time t.

The steps in the computation of the pdf and the cdf of a particular passage
within a CTMC are summarised as follows:

• Uniformise the generator matrix to obtain the new matrix P by:

P = Q/q + I

where Q is the generator matrix, I is the identity matrix and q is a
rate value which is chosen to be greater than the magnitude of all of the
rates within the generator matrix including the values along the diagonal.
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Therefore we have q > maxij |Qij | which can be reduced to q > maxi |Qii|
since the magnitude of the diaganol values in each row are the sums of
the other values in the row which cannot be negative. Since q is of greater
magnitude than any of the (negative) diagonal values dividing by q returns
a negative number x : −1 < x < 0. This means that adding the identity
matrix ensures that all rate values are positive.

• Add to this uniformised matrix P an absorbing state. This state has
no out-going edges to any state other than itself which it loops to with
probability 1.

• Modify all target states (states in T ) to transition with probability one to
the absorbing state. Call this new matrix P ′. The reason for our absorbing
state is to ensure that we compute the probability of the first passage and
not subsequent completions of the passage. That is; if we are in state
i ∈ T at time t then we know we are completing the passage at time t and
it is not the case that we completed the passage at some earlier time and
remained in or returned to state i.

• Compute the probability distribution after n hops of the uniformised
Markov chain; given by π(n) where π(n+1) = π(n)P ′ And π(0) is computed
using the steady-state probabilities of the source states by:

π(0)
k =

{
0 : k !∈ S

πk/πS : k ∈ S
where πk is the steady-state probability of being in state k and πS is the
steady-state probability of being in any one of the source states, that is∑

k∈S πk. Where there is exactly one source state then the steady-state
probability distribution need not be calculated and π(0) is given by:

π(0)
k =

{
0 : k !∈ S
1 : k ∈ S

since for the one source state j, πj = πS .

• For each time t compute:
∑n=∞

n=0 Er(n)
t π(n)

T where Er(n)
t is the probability

that the nth hop will be performed at or before time t and π(n)
T is the

probability of being in any of the target states after exactly n hops of the
uniformised matrix, P ′.

In the final step above we have computed the cdf of the passage by mul-
tiplying the probability of being in a target state after exactly n hops by the
probability of performing n within the time t. This probability is given by:(
1− e−qt

∑n−1
k=0

(qt)k

k!

)
. For the pdf we substitute this for the probability of

performing n hops at exactly time t. This is given by: qntn−1e−qt

(n−1)! .
For completeness we provide the full formulae for computing the cdf and pdf

of the passage respectively given by:
F!ij(t) =

∑∞
n=1

((
1− e−qt

∑n−1
k=0

(qt)k

k!

) ∑
k∈!j π(n)

k

)

and
f!ij(t) =

∑∞
n=1

(
qntn−1e−qt

(n−1)!

∑
k∈!j π(n)

k

)
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Transient Measures A transient measure seeks to obtain information about
a model from the initial state of the model. The intention is to answer such
questions as “What is the expected time before the server first breaks?” Because
we are asking about the model in the short term and not the long term the
steady-state distribution need not be calculated. The measurement reduces to
a passage-time measurement in which there is only one source-state (namely
the initial system configuration). A transient measure is often of use if the
model is not free from deadlock – asking the probability that the system is
deadlocked after a given time is a common transient measure. Depending on
the particular query the transient measure may or may not require the addition
of the absorbing state. In this paper we focus on passage-time measurements.

3 Snakes And Ladders

In this section we detail an example Markovian analysis of the simple board
game “Snakes and Ladders”. Before we proceed with the analysis a brief revision
of the rules. Players start by placing a counter on the start square and take it
in turns to roll a dice. When a player roles the dice they move their counter
forward the number of squares equal to the number they have rolled on the
dice. If a player lands directly on a square on which rests the bottom of a
ladder they can immediately move their counter to the square at the top of the
ladder. Similarly if a player lands directly on a square on which rests the head
of a snake then that player must move their counter down to the square at the
tail of the snake.

Analysing this game using a DTMC to assess the percentage chance of win-
ning any game within a number of turns N has already been done. If we wish
to analyse how long in wall-clock time it will take to complete a game then we
must combine the information about how likely it is to win the game after N
turns together with the probability of performing N turns within a given time.

So our situation is exactly as in the case that we had started with a CTMC
and used uniformisation to obtain a uniform CTMC except that our CTMC was
already neatly uniformised to begin with.

We will use a simplified version of the game with only sixteen squares and
a dice with only three sides, a player can only roll a 1, a 2 or a 3. We further
simplify our task by analysing how long we can expect one player playing by
themselves to complete the game.

The game board looks like the one drawn in Figure 1.
The DTMC representing this can be shown in Table 1, note that there

are only thirteen game states as opposed to sixteen, this is because the state
representing square 5 is equivalent to the state representing square 12 since
when a player lands on square 5 their token is automatically moved to square
12. In particular notice that the states representing squares 2, 3 and 4 each
have an out-going edge straight to square 12 rather than square 5. Should a
player on square 2 roll a 3 their token will end up on square 12, no token can
therefore rest on square 5 so we omit it from the state space. Similarly for the
two squares, 13 and 14, on which there is a snake. There are fourteen states
in total because the absoring state which we will require is already shown. In
the table transitions representing a move to a ladder or snake square and the
resulting jump have their rates written in green and red respectively.
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Figure 1: The simplified Snakes and Ladders board game.
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Table 1: The DTMC of a simple snakes and ladders game
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Figure 2: The probability of completing the game after N hops

We can measure from the set of source states: {0} to the set of target states:
{15}, note that this means we do not require a steady-state distribution since
there is exactly one source state. The graph in Figure 2 shows the probability
of being in particular states after N hops. The probability flows from the other
states through the target state and into the absorbing state which is why the
probability of being in the absorbing state increases as N increases and will equal
one in the limit. The line for the target state depicts the probability density
function (against number of hops rather than time). A fourth line is drawn
which adds the probability of being in either the end state or the absorbing
state. This depicts the cumulative distribution function of the game as it adds
the probability completing the passage at exactly N hops (the probability of
being in the target state) to the probability of completing the game before N
hops (the probability of being in the absorbing state).

Now that we know the probability of completing the game in exactly N
hops, we may use this information to calculate the probability of completing
the game at or by a given time. Since in our example each hop represents one
turn or move of the game then we need only know the rate or average duration
of a turn in the game. If we assume that each turn lasts about six seconds then
the rate at which they occur is ten-per-minute. The graph (Fig. 3, left) shows
the probability of performing exactly N hops at or by time t for various values
of t. The graph (Fig. 3, right) shows the probability of performing N hops at
or by time t seconds for various values of N .

3.1 Producing our final cdf

We can now combine the information in the graphs (Fig 2) and (Fig. 3, right) to
produce the cumulative distribution function for the time it will take one player
to complete the simplified snakes and ladders game. We know the probability of
completing the passage in exactly N hops, π(n)

T , for all values of N . In addition
we know the probability of performing N hops in a given amount of time t,
Er(n)

t . If we multiply these two values for a given N and a given t this gives us
the probability of completing the game in the given t using exactly N hops –
this value we designate as Pn(t). Therefore to compute the general probability
of completing the game within the given amount of time t we need to sum up
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Figure 3: Graphs showing the probability of performing a number of hops by a
given time.

Probability of: value name
completing the passage in exactly N hops

∑
k∈!j π(n)

k π(n)
T

performing N hops within time t
(
1− e−qt

∑n−1
k=0

(qt)k

k!

)
Er(n)

t

completing the passage in N hops by time t π(n)
T Er(n)

t Pn(t)
completing the passage by time t

∑N=∞
N=0 Pn(t) cdf

Table 2: Relationships between the probability values

Pn(t) for all values of N from zero to infinity. The relationships between these
probabilities are shown in Table 2.

Clearly, summing all of these probability values from zero to infinity is im-
possible for a computer to do. However there will be some value X for which all
values NX > X the probability of completing the passage within the given time
in exactly NX hops is negligible. Hence at this point we may stop computing
probability values. The main contribution of this paper is determining the two
conditions which suffice to find the value X.

Previously one method was to compute the probabilities for successive values
of N and whenever the probability (Pn(t)) was sufficiently low we assume that
subsequent values will also be sufficiently low. This method has problems when
the passage we must complete has separate paths which vary greatly in their
length of hops. In this instance it is possible for the probability to drop below
the threshold value but to later climb above it. In this case the given method
would stop calculating the probability values before they have a chance to rise
above the threshold once more.

Our method is to monitor the probability of being in the absorbing state
after N hops – we designate this value Abs(n). When this value climbs to
within a suitable threshold of 1 then there is no probability left to flow through
the target states. Hence the probability of being in a target state for all values
of N greater than the current value must be below the threshold value, since
this probability is multiplied by the probabilty of performing N hops within
time t we know that all subsequent probabilities will be below the threshold.

This method performs well, however, for small values of t we find that we
compute more hop-values than are required. This is because for small values of
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Figure 4: The probability of completing the game after N hops

t it is unlikely that we are able to perform a large number of hops. However if
the passage is long then it may be that the probability of being in the absorbing
state does not climb to within the threshold of one until N is large – whereby
‘large’ we mean “larger than the number of hops we could hope to perform within
the time t”. Therefore we also monitor the value of Pn(t) – the probability of
performing N hops within time t – whenever this value falls below the threshold,
we know that any subsequent values of N will yield negligible probability at time
t (since Pn(t) is involved in the product to find the probability) and hence we
have determined a suitable value of X.

Our algorithm may be summed up by a recursive function as:

cdf(n, t) =






0 : Abs(n) > (1− threshold)
0 : Er(n)

t < threshold(
π(n)
T ∗ Er(n)

t

)
+ (cdf(n + 1, t)) : otherwise

and similarly for the pdf function:

pdf(n, t) =






0 : Abs(n) > (1− threshold)
0 : Er(n)

t < threshold(
π(n)
T ∗ Erp(n)

t

)
+ (pdf(n + 1, t)) : otherwise

Where Erp(n)
t is the probability of performing the Nth hop at exactly time

t and is given by: qntn−1e−qt

(n−1)! . Since there is a lot of shared computation our
implementation computes both the cdf and the pdf of the passage together.

Finally then we may draw our graphs of the cumulative distribution and
probability density functions of our snakes and ladders game. These are depicted
in Figure 4.

4 Comparison with existing techniques

The näıve approach which we briefly illustrated in section 3.1 is to compute
values for successive values of N until such values drop below a threshold. This
method may be summed up by:

cdf(n, t) =





0 :

(
π(n)
T ∗ Er(n)

t

)
< threshold

(
π(n)
T ∗ Er(n)

t

)
+ (cdf(n + 1, t)) : otherwise
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As we mentioned above this algorithm suffers from a problem if the input
passage has multiple paths to completion of varying lengths. In this case the
value at some N may drop below the threshold but may later rise above the
threshold again. The simple solution would stop after the first time it drops
below the threshold.

As an improvement on this technique the Markovian response-time anal-
yser Hydra[3, 4, 5, 6] monitors the value of the erlang distribution with a q
rate parameter and N hop parameter. The Hydra solution can therefore be
summarised by:

cdf(n, t) =

{
0 : Er(n)

t < threshold(
π(n)
T ∗ Er(n)

t

)
+ (cdf(n + 1, t)) : otherwise

Therefore this solution will compute the same values as our solution in all
cases because our solution contains the same condition. However our solution
is a further refinement which allows us to avoid needless computation for some
values of N . In particular where the t-range — that is the times for which we
should compute the passage-time quantiles — specified is too large. Suppose
the user has specified a t-range of 1−1000 but the passage has a probability very
close to one of completing by time 500. Because there is a large probability of
completing the passage by time 500 this means that there is a large probability
of completing the passage within a number of hops X and that X hops are very
likely to be performed within 500 time units. This means that for time values
over 500 there will be a possibility to perform more than X hops and the Hydra
solution will continue to compute probabilities for these hop values. However
our solution would recognise that such values cannot add anything to the cdf
because you are very like to have completed the passage before X hops. In the
case of the cdf this could be mitigated by incorporating the näıve solution but
this is not as effective for computing the pdf.

Our solution has a further, related, advantage; the user need not specify
the upper-bound on the t-range at all. The user need only give the start of
the t-range and the steps in which we wish to increase the value of t. This is
because using our technique we can calculate the value X at which performing
more than X number of hops will not significantly add to the probability of
completing the passage (because there is a probabilty within the threshold of
one of being in the absorbing state by X hops). We can then use this to work
out the upper-bound on the t-range by calculating the value of t such that
performing X hops within time t is significantly likely. In order that the user
need not specify a t-range at all we default to a starting time of zero and a
time-step of the calculated stop-time divided by one hundred. The user may
then override any of; the start-time, the stop-time, the time-increments and the
number to divide the t-range by in order to obtain the time-increments.

5 Implementation

The techniques described in this paper have been fully implemented in the
International PEPA Compiler (ipc) based on the ipclib[7]. This is a compiler for
the Performance Evaluation Process Algebra (PEPA)[8], is open source software
and may be downloaded from: http://www.dcs.ed.ac.uk/pepa/tools/ipc/
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5.1 Technical Points

This paper has shown how to compute passage-time quantiles from continuous
time Markov chains. However we have left the actual numerical computation as
a given, though this is non-trivial. For the cumulative distribution function we
must compute:

F!ij(t) =
∑∞

n=1

((
1− e−qt

∑n−1
k=0

(qt)k

k!

) ∑
k∈!j π(n)

k

)

Notice in particular that we must compute k! for what may be large values
of k. In addition we must compute qtk, also for potentially large values of k.
The large values here are in the order of the number of hops, if we have large
differences between the rates this value may be quite high — a value in the order
of thousands is not uncommon (in [9] this number is said to be of the order of
qt). Hence we can expect to encounter a problem with overflow. Even if some
arbitrary precision library is used (at a performance cost) computing the cdf in
this way is inefficient. Our first observation is that:

(qt)k

k! is equal to:
∏i=k

i=1
qt
i

which allows us to avoid the computation of the large power and factorial values.
Now for each value of N we must compute

∑N
k=0

(qt)k

k! , we need not compute
each term separately we can instead compute the infinite list of values by the
recursive function:
sumvalues(n, current) = current : rest

where rest = sumvalues
(
n + 1, current +

∑N
k=0

(qt)k

k!

)

Because our implementation is in the lazy programming language Haskell we
need not worry about the computation of an infinite list since we will only ever
examine a finite number of elements from it. For a strict language this laziness
can be easily simulated. We now observe that even this computation does a
large amount of re-computation. Namely the successive values of

∑N
k=0

(qt)k

k!
recompute all previous values. However we can use the same trick:
prodvalues(k, current) = current : rest

where rest = prodvalues
(
k + 1, current× qt

k

)

This means that we can now update our sumvalues function to take advan-
tage of this. It now becomes a list transformation function which takes in the
list of product values computed by the above prodvalues function.
sumvalues(current, (n, p) : rest) = (n, current) : restsum

where restsum = sumvalues(current + p, rest)
We can also factor out the code to calculate the probability of being in the

absorbing state and/or a target state after exactly N hops. Since otherwise
we will recompute these values for each time value we desire. Once we have
factored out all the common computation we have a set of infinite lists which
map N from N = 0 to N = ∞ to values used in the computation of the cdf and
pdf. We need only operate on these lists for the values of t.

5.2 Computing hops

We must compute the probability of completing the passage in a given number
of hops. Recall that the probability of completing the passage in exactly N hops
is given by:

∑
k∈T πN

k

Further recall that each hop is computed via the previous hop as:
π(n+1) = π(n)P ′
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Therefore we are required to perform successive matrix multiplications. If we
have a large matrix P ′ these matrix multiplications may be expensive. However
we note that P ′ is a modified version of the matrix P which is a uniformised
version of the original generator matrix Q. We have modified P by adding an
absorbing state and each state in the target set T has been mutated to target
only the absorbing state. This means that, even in the case that all states in the
matrix Q were reachable there may be a set of states which are now unreachable,
call this set U . In fact this set is likely to be non-empty. It represents all the
states in the original which are not on any path from S to T but are on some
path from T to S.

Consider the model of a system containing 20 clients and 2 servers. Each
server may accept requests and subsequently make a response. The servers
therefore have two states: Available and Busy. Each client synchronises with
one of the two servers over a request and then waits for a response. Between
subsequent communications with a server each client must do two pieces of
work. The client therefore has three states which it cycles through; Working,
Waiting and Using. The Using state corresponds to the using of the data
returned by the server and the Working state corresponds to the generation of
a new request to the server.

If we wish to measure the response-time of this model we must measure the
response-time as observed by a single client, suppose we choose the first client
named Client0. The set of source states is the set of states in which the first
client is in the Waiting state and is a target of a transition in which the source
state of the transition has the first client in the Working state. Conversely the
set of target states is the set of states in which the first client is in the Using
state and is a target of some transition from a state in which the first client is
in the state Waiting.

For this measurement all states in which the first client is in the Waiting
state are along some path from S to T however all states in which the first client
is the in Working state are not in T (since the client must go through the Using
state) or in S or on some path between S and T . These states are all in the
unreachable set U . In this particular case this corresponds to approximately
half of the entire state space of the model. Where there are more client states
not within the passage this ratio can increase such that the size of the set U is
much larger than the set of states not in U .

Because we know that for any n and i ∈ U :
π(n)

i = 0
we can avoid a lot of calculation by transforming the matrix P ′ into a smaller

matrix removing the unreachable states. Since we perform many matrix multi-
plications using this matrix to obtain the hops, this is a potentially very large
saving.

6 Conclusions

In this paper we have given a detailed account of the calculation of passage-time
quantiles and densities from continuous-time Markov chains. Although we have
shown how to obtain the uniformised matrix from the original generator matrix
of the CTMC, we have focussed on the calculations that occur once the matrix
has already been uniformised. To this extent our main contribution has been
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the identification of two important properties which allow the otherwise infinite
calculation to terminate. The two properties have the desired feature that we
are conservative — meaning that we never terminate too early producing an
erroneous answer. However the combination of the two provides early detection
to avoid some needless calculations. In addition we feel that our paper is a good
introduction to the topic of uniformisation in general.
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Which battery model to use?

Marijn R. Jongerden∗ Boudewijn R. Haverkort†

Abstract

The use of mobile devices like cell phones, navigation systems, or lap-
top computers, is limited by the lifetime of the included batteries. This
lifetime depends naturally on the rate at which energy is consumed, how-
ever, it also depends on the usage pattern of the battery. Continuous
drawing of a high current results in an excessive drop of residual capac-
ity. However, during intervals with no or very small currents, batteries
do recover to a certain extend. The usage pattern of a device can be well
modeled with stochastic workload models. However, one still needs a bat-
tery model to describe the effects of the power consumption on the state
of the battery. Over the years many different types of battery models have
been developed for different application areas. The best type of model to
use in the setting of performance modelling are analytical models. In this
paper we analyse two well-known analytical models, and show that one
is actually an approximation of the other; this was not known previously.
Furthermore, we tested the suitability of these models for performance
evaluation purpose.

1 Introduction

With the proliferation of cheap wireless access technologies, such as wireless
LAN, Bluetooth as well as GSM, the number of wireless devices an average
citizen is using has been steadily increasing over the last decade. Such devices
do not only add to the flexibility with which we can do our work, but also add
to our reachability and our security. Next to these personal wireless devices,
an ever growing number of wireless devices is used for surveillance purposes,
most notably in sensor-type networks. A common issue to be dealt with in the
design of all of these devices is power consumption. Since all of these devices use
batteries of some sort, mostly rechargeable, achieving low power consumption for
wireless devices has become a key design issue. This fact is witnessed by many
recent publications on this topic, and even a special issue of IEEE Computer
devoted to it [1].

Low-power design is a very broad area in itself, with so-called “battery-
driven system design” a special branch of it, that becomes, due to the reasons
mentioned, more and more important. A key issue to be addressed is to find
the right tradeoff between battery usage and required performance: how can
we design a (wireless) system such that with a given battery, good performance
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(throughput, reachability, and so on) is obtained, for a long-enough period.
Stated differently, how should the processes in the wireless device be organised
such that the battery lifetime (which determines the system lifetime) will be as
high as possible. Indeed, it has been observed recently that due to the specific
physical nature of batteries, achieving the longest battery lifetime is not always
achieved by “just” trying to minimise the power consumption at any point in
time. Instead, also the way in which the power is consumed, that is, the current-
extraction patterns and the employed current levels play a role in the battery
lifetime.

Using an abstract workload model one can model the operation of a sys-
tem, describing the various states the wireless device can be in, together with
the energy consumption rates in those states. Also, the transition possibilities
between these states can be represented in the workload model. Such a descrip-
tion can be interpreted as a Markov-reward model in which accumulated reward
stands for the amount of energy consumed. The system or battery lifetime then
equals the time until a certain level of consumption (the available charge of the
battery) is reached. Determining this time, or better, its distribution, could
be done with well-known techniques for performability evaluation. However,
such an approach does not well take into account the physical aspect of battery
operation. Indeed, studies on batteries reveal that the battery depletion rate
in general is non-linear in time, and, moreover, also depends on the amount
of energy still in the battery. [2, 3] Furthermore, in periods when a battery
is not used, subtle but important battery-restoration effects are in place, that
apparently refill the battery.

To capture the influence of the power consumption on the battery, a battery
model is needed. Over the years, many different types of battery models have
been developed for different application areas [3]. For example, the electro-
chemical models described in [4, 5, 6] are used in battery design. These models
describe the battery in its very detail using a set of six coupled differential
equations. Another example are the electrical circuit models used in electrical
enginering [7], which focus on the electrical properties of the battery. Although
these models describe the battery accurately, they are not suitable to be used
in the setting of the performance models because of the detailed description,
which would make the combined model unmanageable. What is needed, is an
abstract model which focuses on the important battery properties and their
effects only. Two analytical models are good candidates: the Kinetic Battery
Model (KiBaM) by Manwell and McGowan [8, 9, 10] and the diffusion based
model by Rakhmatov and Vrudhula [11]. These two models describe the battery
using only two differential equations. Although the equations the two models
start from are really different, we show by applying a coordinate transformation
on the KiBaM, that the KiBaM is actually a first order approximation of the
diffusion model. A further theoretical and practical comparison of the two
models is made, which leads to the conclusion which model is best to use in the
setting of the performance models.

The rest of the paper is structured as follows. Section 2 gives a short in-
troduction to battery properties that have to be addressed. In Section 3 the
two analytical battery models are introduced and Section 4 gives a theoretical
and practical comparison of these models, which leads to the conclusion which
model is best to use. In Section 5 the limitations of the analytical model are
analysed. We end with conclusions and an outlook to future work in Section 6.
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2 Batteries

The two most important properties of a battery are its voltage (expressed in
volts V ) and its capacity (mostly expressed in Ampere-hour, Ah); the product
of these two quantities is a measure for the energy stored in the battery. For
an ideal battery the voltage stays constant over time until the moment it is
completely discharged, then the voltage drops to zero. The capacity in the ideal
case is the same for every load for the battery. Reality is different, though: the
voltage drops during discharge and the effectively perceived capacity is lower
under a higher load. This phenomenon is termed the rate capacity effect.

In the ideal case it is easy to calculate the lifetime of a battery. The lifetime
(L) in the case of a constant load is the capacity (C) over the load current (I):

L = C/I. (1)

Due to various nonlinear effects this relation does not hold for real batteries.
A simple approximation for the lifetime under constant load can be made with
Peukert’s law [11]:

L =
a

Ib
, (2)

where a > 0 and b > 1 are constants which depend on the battery. For variable
loads (i(t)) one can extend this formula by using the average current up until
t = L:

L =
a

(
1
L

∫ L
0 i (t) dt

)b
(3)

Following (3), all load profiles with the same average would have the same
lifetime. Experimentally it can be shown that this is not the case. One of the
effects playing an important role here is the recovery effect of the battery. This,
is the effect that the battery can regain some of its “lost” capacity during idle
periods.

3 Battery models

In this section two analytical battery models are discussed. In both models the
non-linear effects of the battery are described using two differential equations.
In Section 3.1 we present the diffusion model of Rakhmatov and Vrudhula. In
Section 3.2 we present the Kinetic Battery Model of Manwell and McGowan.
Then, in Section 3.3, we apply a coordinate transformation on the Kinetic Bat-
tery Model, which leads the insight that this model is actually an approximation
of the diffusion model.

3.1 Rakhmatov and Vrudhula’s diffusion model

An analytical battery model based on the diffusion of the ions in the electrolyte
has been developed by Rakhmatov and Vrudhula in 2001 [11, 12, 13]. The
model describes the evolution of the concentration of the electro-active species
in the electrolyte to predict the battery lifetime under a given load. In the
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electrode electrolyte electro-active species

(a) Charged state (b) Before recovery

(c) After recovery (d) Discharged state

w

Figure 1: Physical picture of the model by Rakhmatov and Vrudhula

model the processes at both electrodes are assumed identical, thus the battery is
assumed symmetric with respect to the electrodes and only one of the electrodes
is considered.

Figure 1 shows a simplified view of the battery operation according to the
diffusion model. At first, for the full battery, the concentration of the electro-
active species is constant over the full width (w) of the electrolyte (Figure 1(a)).
When a load is applied to the battery, the electrochemical reaction results in
a reduction of the concentration of the species near the electrode. Thus, a
gradient is created across the electrolyte (Figure 1(b)). This gradient causes
the species to diffuse towards the electrode. Now, when the load is switched off,
the concentration of the species at the electrode will increase again (recover)
due to the diffusion, and eventually the species will be evenly distributed over
the electrolyte again. The concentration, however, will be lower than for the
full battery (Figure 1(c)). Finally, when the concentration at the electrode
drops below a certain value (Ccutoff), the chemical reaction can no longer be
maintained and the battery is considered to be empty (Figure 1(d)).

The concentration of the electro-active species at time t and distance x ∈
[0, w] is denoted by C (x, t). For the full battery the concentration is constant
over the length of the electrolyte: C (x, 0) = C∗, x ∈ [0, w]. The battery
is considered empty when C (0, t) drops below the cutoff level Ccutoff. The
evolution of the concentration is described by Fick’s laws [11]:






−J(x, t) = D
∂C (x, t)

∂x ,

∂C (x, t)
∂t = D

∂2C (x, t)
∂x2 ,

(4)
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where J (x, t) is the flux of the electro-active species at time t and distance x
from the electrode, and D is the diffusion constant. The flux at the electrode
surface (x = 0) is proportional to the current (i (t)). The flux on the other side
of the diffusion region (x = w) equals zero. This leads to the following boundary
conditions:






D
∂C (x, t)

∂x

∣∣∣∣
x=0

= i (t)
νFA,

D
∂C (x, t)

∂x

∣∣∣∣
x=w

= 0,
(5)

where A is the area of the electrode surface, F is Faraday’s constant , and ν is
the number of electrons involved in the electrochemical reaction at the electrode
surface.

It is possible to obtain an analytical solution for this set of partial differential
equations (4) together with the initial condition and the boundary conditions 5
using Laplace transforms. From that solution one can obtain an expression for
the apparent charge lost from the battery (σ(t)) [14]:

σ (t) =
∫ t

0
i (τ) dτ

︸ ︷︷ ︸
l(t)

+
∫ t

0
i (τ)

(
2

∞∑

m=1

e−β2m2(t−τ)

)
dτ

︸ ︷︷ ︸
u(t)

, (6)

where β = π
√

D/w. The apparent charge lost is separated in two parts, the
charge lost to the load (l(t)) and the unavailable charge (u(t)). The first is the
charge used by the device. The second is charge which remains in the battery
unused. The battery is empty when the apparent charge lost is equal to the
battery’s capacity.

For a constant current I, (6) can easily be solved. For l (t) one obtains:
l (t) = It. For the unavailable charge one can interchange the integral and the
summation, which leads to:

u (t) = 2I
∞∑

m=1

1− e−β2m2t

β2m2
. (7)

During idle periods the unavailable charge will decrease and will be available
again for the load. One can compute the function that describes the evolution
of the unavailable charge during an idle period after a load I that lasted for a
period of length tl:

u (ti) = 2I
∞∑

m=1

e−β2m2ti

(
1− e−β2m2tl

)

β2m2
, (8)

where ti is the idle time.

3.2 Kinetic Battery Model

Another analytical model which can be used for computing battery lifetimes is
the Kinetic Battery Model (KiBaM) of Manwell and McGowan [8, 9, 10]. The
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Figure 2: Two-well-model of the Kinetic Battery Model

KiBaM is a very intuitive battery model. In the model the battery charge is
distributed over two wells: the available-charge well and the bound-charge well
(cf. Figure 2). A fraction c of the total capacity is put in the available charge
well, and a fraction 1 − c in the bound charge well. The available charge well
supplies electrons directly to the load (i (t)), whereas the bound-charge well
supplies electrons only to the available-charge well. The rate at which charge
flows between the wells depends on the height difference between the two wells,
and on a parameter k. The heights of the two wells are given by: h1 = y1

c and
h2 = y2

1−c . The change of the charge in both wells is given by the following
system of differential equations:






dy1
dt = −i (t) + k(h2 − h1),

dy2
dt = −k(h2 − h1),

(9)

with initial conditions y1(0) = c · C and y2(0) = (1− c) · C, where C is the total
battery capacity. The battery is considered empty when there is no charge left
in the available charge well.

When a load is applied to the battery, the available charge reduces, and the
height difference between the two wells grows. When the load is removed, charge
flows from the bound-charge well to the available-charge well until h1 and h2

are equal again. So, during an idle period, more charge becomes available and
the battery lasts longer than when the load is applied continuously. In this way
the recovery effect is taken into account in the model. Also, the rate capacity
effect is covered, since for a higher discharge current the available charge well
will be drained faster, less time will be available for the bound charge to flow
to the available charge. Therefore, more charge will remain unused, and the
effective capacity is lower.

The differential equations (9) can be solved for the case of a constant dis-
charge current (i (t) = I) using Laplace transforms, which yields:

{
y1 = y1,0e−k′t + (y0k′c−I)(1−e−k′t)

k′ − Ic(k′t−1+e−k′t)
k′ ,

y2 = y2,0e−k′t + y0(1− c)(1− e−k′t)− I(1−c)(k′t−1+e−k′t)
k′ ,

(10)

where k′ is defined as k′ = k/c (1− c) , y1,0 and y2,0 are the amount of available
and bound charge, respectively, at t = 0,and y0 = y1,0 + y2,0.
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3.3 Coordinate transformation

Although the differential equations (9) nicely describe the discharge process of
the battery, and an analytical solution can be obtained for constant discharge
currents, the equations can be made more simple when a coordinate transform
is applied. In this way even more insight can be obtained in the way the model
behaves.

From (9) one can see that the height difference between the two wells (h2−h1)
plays a major role in the model. This is one of the coordinates after the trans-
formation, the other is the total charge in the battery. So, the transformation
changes the coordinates from y1 and y2 to δh = h2 − h1 and γ = y1 + y2. This
transformation changes the differential equations to:

{
dδh
dt = i(t)

c − k′δh,
dγ
dt = −i (t) ,

(11)

with initial conditions δh (0) = 0 and γ (0) = C. In the new coordinate system
the condition for the battery to be empty is: γ(t) = (1 − c)δh(t). The differ-
ential equations are independent and are straightforwardly solved for constant
discharge currents:

{
δh (t) = I

c · 1−e−k′t

k′ ,

γ (t) = C − It.
(12)

Like for the diffusion model, one can also compute the evolution of δh as a
function of the idle time ti after a load I that lasted for a period tl:

δh(ti) =
I

c
· e−k′tr(1−e−k′tl )

k′
. (13)

The solutions for continuous discharge can be used to obtain a solution for
any discharge profile with piecewise constant currents by adapting the initial
conditions appropriately. The level of γ and δh at the end of a step in the load
profile, can be used as initial conditions for the next step.

4 Comparing the analytical models

The interpretation of the diffusion model with its unavailable charge is very
similar to the KiBaM with its bound charge. However, it is actually the height
difference times 1− c in the KiBaM that plays the same role as the unavailable
charge in the diffusion model.

4.1 Continuous discharge

It is possible to write the solution of the transformed KiBaM in the form of the
diffusion model with the charge lost split in a load and an unavailable charge
part. For constant current discharge this yields:

l(t) = C − γ(t) = It (14)

u(t) = (1− c) · δh(t) =
(1− c)I

c

1− e−k′t

k′
(15)
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Figure 3: Fit of the KiBaM to the diffusion model. The evolution of the un-
available charge in both the diffusion model and the fitted KiBaM is given in
(a). In (b) the relative difference between the two curves is given.

When one compares (15) with (7), one sees that the former has the same form
as the first term of the sum of the latter. Setting c = 1

3 and k′ = β2 in the
KiBaM, results in the first order approximation of the diffusion model. This is
of course, a bad approximation of the infinite sum.

One can obtain a much better approximation, when the parameters c and
k′ are used to fit the KiBaM equation of u(t) to the equation of the diffusion
model. Figure 3(a) shows the result of a least squares fitting procedure for the
case that I = 0. When β = 0.273 min−

1
2 , the fit results in c = 0.166 and

k′ = 0.122 min−1. In Figure 3(b) the relative difference between the two curves
is shown. This difference is independent of the discharge current. The relative
difference is very large, up to 80%, for times smaller than 10 minutes. This
implies that the results for battery lifetime computations will differ mainly for
high discharge currents.

4.2 Frequency response
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Figure 4: Frequency response for
KiBaM and diffusion model

Following the method described in [14] an
analysis of the frequency response of both
the Kinetic Battery Model and Rakhma-
tov and Vrudhula’s diffusion model was
done. The results are given in Figure
4. The figure shows that the diffusion
model has a higher frequency response
for high frequencies. This is due to the
high order terms that are included in the
diffusion model and not in the KiBaM.
However, both models are highly insensi-
tive to high frequency current switching.
Currents varying faster than 0.01 Hz can
be replaced with an average current with-
out giving significant errors in the battery
lifetime computations. The level of the
frequency response is mainly determined by the size of the recovery parameter
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Test Name Iave DUALFOIL Diffusion KiBaM
(mA) (min) (min) (min)

T1 MPEG 222.7 140.9 139.9 139.9
T2 Dictation 204.5 156.0 156.0 156.0
T3 Talk1 108.3 317.2 331.4 331.4
T4 Talk2 107.5 319.5 334.1 334.1
T5 Talk3 94.9 365.1 384.0 384.0
T6 WAV1 84.3 413.7 437.5 437.5
T7 WAV2 75.5 464.8 493.3 493.3
T8 Idel1 28.0 1278 1400 1401
T9 Idle2 19.5 1852 2029 2029
T10 SleepDC 3.0 12285 13417 13417
T11 IAT 628.0 26 26.6 24.9
T12 IAR 494.7 41.3 41.4 40.5
T13 IST 425.6 54.6 53.9 53.5
T14 ISR 292.3 99.5 96.7 96.7
T15 IAD 265.6 113.1 110.6 110.6
T16 MSD 252.3 120.8 118.6 118.6
T17 DSD 234.1 132.7 131.0 131.0
T18 TSD 137.9 243.6 251.3 251.3
T19 WSD 113.9 300.1 313.0 313.0
T20 ISD 57.6 616.3 659.5 659.5
T21 SSD 32.5 1101 1201 1201
T22 Boot 300.0 96.0 93.2 93.1

Table 1: Lifetimes of continuous current discharge computed with DUALFOIL,
the diffusion model (both from [13]) and KiBaM (computed by us). The dis-
charge currents belong to different operational states of the Itsy pocket com-
puter.

(k′ or β). An increase of this parameter results in higher frequency response,
and thus to a higher sensitivity to fine-grained scheduling.

4.3 Computing lifetimes

Next to the theoretical analysis of the two models, both models were used to
compute battery lifetimes for various load profiles.

In [13] Rakhmatov et al. give the battery lifetimes for load profiles of a Com-
paq Itsy pocket computer, computed both with their diffusion model and the
electro-chemical model DUALFOIL [15]. To these results the lifetimes accord-
ing to the KiBaM model have been added in Table 1 for constant loads and
Table 2 for variable-load profiles. Details of the variable-load profiles are given
in Table A (in Appendix A).

The lifetimes computed using the KiBaM and diffusion model match very
well. The results for continuous discharge only deviate at high discharge cur-
rents, as expected from the analysis of the equations, but the difference still
is less than 7%. Also, for the variable loads the difference is largest for short
battery lifetimes, with a maximum of 5.4% for Case 21.

Figure 5 shows a plot of the lifetimes computed with both models versus the
lifetimes computed with the electro-chemical simulation program DUALFOIL.
In comparison with DUALFOIL both models overestimate the battery lifetime
for the low continuous loads (long lifetimes), with errors growing upto 10%. The
results of the variable loads are even better, with a maximum error of 5%.
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Case DUALFOIL Diffusion KiBaM Case DUALFOIL Diffusion KiBaM
(min) (min) (min) (min) (min) (min)

C1 36.4 36.2 36.3 C12 159.0 155.4 154.1
C2 57.2 55.8 55.7 C13 133.8 131.7 131.3
C3 74.2 71.9 71.4 C14 132.9 129.7 129.4
C4 128.1 124.9 123.6 C15 207.6 209.2 209.2
C5 178.5 176.7 175.7 C16 202.4 200.7 200.7
C6 41.5 41.0 41.1 C17 253.8 251.2 250.8
C7 30.6 30.8 30.5 C18 204.6 204.6 204.3
C8 37.0 37.4 38.1 C19 209.4 208.7 208.2
C9 35.4 35.2 34.8 C20 31.7 33.2 31.5
C10 135.2 132.6 131.7 C21 55.9 55.9 58.8
C11 108.8 107.4 107.9 C22 97.5 94.5 94.3

Table 2: Lifetimes of variable-load profiles (cf. Appendix A) computed with
DUALFOIL, the diffusion model (both from [13]) and KiBaM (computed by
us)
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Figure 5: Computed lifetimes according to the Dualfoil simulation program
versus the diffusion model and the KiBaM for constant loads (a) and variable
loads (b). Next to the two analytical models, the lifetimes according to the
formulas of the ideal battery (1) and Peukert’s law (3) are shown.

Besides the results of the two models, also the lifetimes according to Peuk-
ert’s law and the ideal battery model are shown in Figure 5. The ideal battery
model always predicts longer lifetimes, since it does not take into account any
loss of capacity due to the rate capacity effect. Also, Peukert’s law overestimates
the battery lifetimes for most cases. Only for the high continuous loads it gives
better predictions than the KiBaM and diffusion model.

5 Limitations of analytical battery models

In the previous section we have seen that both models give nearly the same
results. In this section, all further results are obtained with the KiBaM, but the
conclusions also apply on the diffusion model.

With the KiBaM the effect of a varying load on the charge delivered by the
battery was analysed in more detail. A square wave, switching between on (1 A)
and off (0 A), was used as load. In Figure 6 the charge delivered is shown as a
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function of the frequency of the periodic load. For low frequencies the delivered
charge is constant, because the battery is emptied during the first on-period.
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Figure 6: Charge delivered by the
battery as a function of the fre-
quency a square wave load. The
charge delivered is computed using
the KiBaM, with the parameters c =
0.625, k = 4.5 · 10−5min−1 and the
capacity of 7200 As.

Therefore, the charge delivered is equal to
the case of continuous discharge at 1 A.
When the frequency is increased, one sees
a sudden discontinuous increase of the
charge delivered by the battery. At the
point of this jump, the battery is nearly
empty at the end of the first on-period,
and it has an off-period to recover some
of its capacity. The recovered charge can
be used in the next on-period, resulting
in a considerable increase of the delivered
charge. After this increase, the deliv-
ered charge slowly decreases when the fre-
quency is further increased. The explana-
tion of this decrease is twofold. First, the
off-period is shorter and therefore there
is less time for recovery. Second, the first
on-period is shorter and less charge is de-
livered to the load during this time.

Further increase of the frequency re-
sults in a discontinuous increase of the
charge delivered each time the battery can recover during an extra off-period,
followed again by a slow decrease. The increase gets smaller for higher frequen-
cies since the extra recovery-time decreases. When the frequency is > 10−2 Hz,
the charge delivered is constant again. This is due to the short extra off-time,
and the low frequency response at these high frequencies (cf. Section 4.2).

For the chosen load and set of battery parameters the charge delivered is
highest for a frequency of ∼ 10−4 Hz. However, the position of the peaks
depends highly on the battery parameters and the level of the on-current, and
a slight variation might result in a big change in the charge delivered by the
battery. In practice the battery parameters vary even between batteries of the
same size and type. Therefore, it does not make sense to do battery lifetime
predictions using single traces of a load profile. The used trace could result in
a high performance of the battery with one set of the parameters, and a low
performance with a slightly different set of parameters.

6 Conclusions & Outlook

The analysis of the KiBaM and diffusion model shows that the KiBaM is actually
a first order approximation of the diffusion model. The parameters of the KiBaM
can be adapted to make a better approximation of the diffusion model. The
performed experiments with both models show that this approximation is very
good for most practical loads. Therefore, it is better to use the more simple
KiBaM model. However, one has to be carefull using this type of model when
drawing conclusions from only a few workload traces. A slight change in the
battery parameters can change the battery lifetime dramatically especially when
the load switching frequencies are low. A good way to avoid this problem is to
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make use of stochastic workload models. With these models one can capture the
full range of different possible workloadtraces. This results in a battery lifetime
distribution, which tells us the probability of the battery being empty at time t
given the type of workload. Comparing these probabilities one can find the best
way to use the battery. Slight changes in the battery parameters, now, will not
effect the results dramatically. One approach to do this is the by using Markov
reward models, as described in [2]. Another approach is using prized timed
automata [16] to describe the workload, and incorporate the Kinetic Battery
Model into this model. This approach can help in finding the best scheduling
scheme in a multi-battery system.

References

[1] IEEE Computer, vol. 38, no. 11. IEEE Press, 2005.

[2] L. Cloth, B. R. Haverkort, and M. R. Jongerden, “Computing battery
lifetime distributions,” in Proceedings of the 37th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks (DSN 2007).
IEEE Computer Society Press, 2007, pp. 780–789.

[3] M. R. Jongerden and B. R. Haverkort, “Battery modeling,” Tech-
nical Report TR-CTIT-08-01, January 2008. [Online]. Available:
http://eprints.eemcs.utwente.nl/11645/

[4] M. Doyle, T. F. Fuller, and J. Newman, “Modeling of galvanostatic charge
and discharge of the lithium/polymer/insertion cell,” Journal of the Elec-
trochemical Society, vol. 140, no. 6, pp. 1526 – 1533, 1993.

[5] T. F. Fuller, M. Doyle, and J. Newman, “Simulation and optimization of
the dual lithium ion insertion cell,” Journal of the Electrochemical Society,
vol. 141, no. 1, pp. 1 – 10, 1994.

[6] ——, “Relaxation phenomena in lithium-ion-insertion cells,” Journal of the
Electrochemical Society, vol. 141, no. 4, pp. 982 – 990, 1994.

[7] S. C. Hageman, “Simple PSpice models let you simulate common battery
types,” Electronic Design News, vol. 38, pp. 117 – 129, 1993.

[8] J. Manwell and J. McGowan, “Lead acid battery storage model for hybrid
energy systems,” Solar Energy, vol. 50, pp. 399–405, 1993.

[9] ——, “Extension of the kinetic battery model for wind/hybrid power sys-
tems,” in Proceedings of the 5th European Wind Energy Association Con-
ference (EWEC ’94), 1994, pp. 284–289.

[10] J. Manwell, J. McGowan, E. Baring-Gould, S. W., and A. Leotta, “Evalu-
ation of battery models for wind/hybrid power system simulation,” in Pro-
ceedings of the 5th European Wind Energy Association Conference (EWEC
’94), 1994, pp. 1182–1187.

[11] D. Rakhmatov and S. Vrudhula, “An analytical high-level battery model for
use in energy management of portable electronic systems,” in Proceedings
of the International Conference on Computer Aided Design (ICCAD’01),
2001, pp. 488–493.

87 M.R. Jongerden and B.R. Haverkort

UKPEW 2008 – http://ukpew.org/



[12] D. Rakhmatov, S. Vrudhula, and D. A. Wallach, “Battery lifetime predic-
tions for energy-aware computing,” in Proceedings of the 2002 International
Symposium on Low Power Electronics and Design (ISLPED ’02), 2002, pp.
154–159.

[13] ——, “A model for battery lifetime analysis for organizing applications on
a pocket computer,” IEEE Transactions on VLSI Systems, vol. 11, no. 6,
pp. 1019–1030, 2003.

[14] R. Rao, S. B. K. Vrudhula, and N. Chang, “Battery optimization vs en-
ergy optimization: which to choose and when?” in Proceedings of the In-
ternational Conference on Computer Aided Design (ICCAD’05). IEEE
Computer Society, 2005, pp. 439–445.

[15] Fortran programs for the simulation of electrochemical systems. [Online].
Available: http://www.cchem.berkeley.edu/jsngrp/fortran.html

[16] G. Behrmann, K. G. Larsen, and J. I. Rasmussen, “Optimal scheduling
using priced timed automata,” SIGMETRICS Performance Evaluation Re-
view, vol. 32, no. 4, pp. 34–40, 2005.

A Appendix

Case Description Timing (min)

C1 IAT-off-IAT (0, 19.5, 26.0)
C2 IAR-off-IAR (0, 31.0, 41.3)
C3 IST-off-IST (0, 41.0, 54.6)
C4 ISR-off-ISR (0, 74.6, 99.5)
C5 MPEG-off-MPEG (0, 105.7, 140.9)
C6 IAT-off-IAT (0, 19.5, 29.9)
C7 IAT-off-IAT (0, 19.5, 22.1)
C8 IAT-off-IAT (0, 23.4, 29.9)
C9 IAT-off-IAT (0, 15.6, 22.1)
C10 Boot-IAT-IAR-MSD-DSD-TSD-WSD-IAD (0, 0.5, 5.5, 10.5, 35.5, 60.5, 85.5, 110.5)
C11 Boot-WSD-TSD-DSD-MSD-IAR-IAT-IAD (0, 0.5, 25.5, 50.5, 75.5, 100.5, 105.5, 110.5)
C12 Boot-WSD-TSD-DSD-MSD-IAR-off-. . . (0, 0.5, 25.5, 50.5, 75.5, 100.5, 105.5,. . .

Boot-IAT-IAD 130.5, 131.0, 136.0)
C13 Boot-[IAT-IAR-MSD-DSD-TSD-WSD]5-IAD (0, [0.5, 1.5, 2.5, 7.5, 12.5, 17.5]522.5 , 110.5)
C14 Boot-[WSD-TSD-DSD-MSD-IAR-IAT]5-IAD (0, [0.5, 5.5, 10.5, 15.5, 20.5, 21.5]522.5, 110.5)
C15 MPEG-Dictation-Talk1-WaV1-MPEG (0, 50.0, 100.0, 150.0, 200.0)
C16 WAV1-Talk1-Dictation-MPEG-MPEG (0, 50.0, 100.0, 150.0, 200.0)
C17 WAV1-Talk1-Dictation-off-MPEG-MPEG (0, 50.0, 100.0, 150.0, 200.0, 250.0)
C18 [WAV1-Talk1-Dictation-MPEG]10-MPEG ([0, 5.0, 10.0, 15.0]1020.0 , 200)
C19 [WAV2-Talk3-Dictation-MPEG]10-MPEG ([0, 5.0, 10.0, 15.0]1020.0 , 200)
C20 [IAR-IAT]∞ ([0, 1.0]∞2.0)
C21 [IAR-IAT-ISD]∞ ([0, 1.0, 2.0]∞3.0)
C22 5.0 + (5.0 per min) (0, 1.0, 2.0, . . . )

Table 3: The simulated variable-load profiles [13]
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Analytical TCP Throughput Model for
HSDPA∗

Levente Bodrog† Gábor Horváth‡ Csaba Vulkán§

Abstract

In this paper, an approximate, Padhye model based TCP throughput
calculation method is presented for mobile data services over HSDPA.
The Padhye model is defining the TCP throughput based on two input
parameters: the packet loss probability and the TCP Round Trip Time.
In order to provide the input parameters for the TCP throughput cal-
culation, an equivalent queuing network model of the HSDPA system is
created, which includes the congestion points and protocol layers that are
having dominant impact on the delay and packet drop. The solution of
the queuing network model is described in detail. Finally, the model is
validated with NS2 simulations.

1 Introduction

HSDPA (High Speed Downlink Packet Access) provides a packet based downlink
service for data users over the UMTS (Universal Mobile Telecommunications
System) with data rates ranging up to several megabits per second. [7]

In conventional UMTS, the Layer 2 protocols of the radio protocol inter-
face, such as Radio Link Control (RLC) and Medium Access Control (MAC)
protocol are terminated in the Radio Network Controller (RNC). Physical layer
protocols of the radio interface are implemented in the Node-B that is connected
to the RLC via the Iub interface. In Acknowledged Mode (AM), the RLC is
responsible for error-free, in-sequence delivery of the user data. This is achieved
by retransmissions based on the (Automatic Repeat Request) ARQ mechanism.
RLC retransmissions are increasing the Layer 2 Round Trip Time (RTT) and
may trigger TCP timeouts.

HSDPA is introducing an additional protocol layer located in the Node-B
(see Figure 1), namely MAC-hs, which makes possible Node-B controlled fast
adaptation of the modulation and coding scheme, fast scheduling and retrans-
mission handling with the Hybrid ARQ (HARQ) functionality. This solution is
reducing the Layer 2 RTT when retransmissions are required due to erroneous
data transfer. Although retransmissions are handled by the Node-B, RLC ARQ
has not been removed from the system in order to be compatible with the

∗The research work of Levente Bodrog and Gábor Horváth is partially supported by the
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Rel’99 network solutions and to provide the capability of soft handover control.
Retransmissions are still handled by RLC if the maximum allowed number of
MAC-hs retransmissions is exceeded or there are packet drops on the transport
network. The RLC retransmissions are increasing the round trip time of the
data connections using HSDPA service. These factors and the in-sequence de-
livery of the user packets by the RLC are causing that the TCP flow control
is not able to detect and resolve the congestion situation on the Iub interface.
As a result, the TCP notices the congestion only upon the expiry of the Time-
out timer or when finally the RLC discards the packets that has reached the
maximum number of retransmissions.
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Figure 1: The overview of the protocols of HSDPA

The distribution of the radio protocol architecture between RNC and Node-
B requires that a flow control algorithm – the HSDPA flow control [10] – is
implemented. With this algorithm the Node-B controls the amount of data sent
from the RNC in order to keep its buffers at optimal level so that the air interface
capacity is not wasted, and in the same time the delay on the Node-B buffer is
not too high. Typically, the HSDPA flow control is measuring the Node-B buffer
size and the amount of transferred Packet Data Units (PDUs) over a sampling
period without considering the available resources on the Iub transport network
shared by Real Time (RT) Non Real Time (NRT) and HSDPA services.

A good indicator of the level of service an HSDPA access network can pro-
vide to the mobile users is the achievable TCP throughput. TCP performance
in HSDPA has been considered in [3], [2] and [1] in the past. These papers
are presenting a detailed simulation based analysis of the TCP behaviour over
HSDPA systems, but the results are based on simulations. In this paper we
propose an analytical throughput model for TCP connections over HSDPA.

The rest of the paper is organized as follows. Section 2 gives a short tech-
nological overview on the HSDPA UTRAN, describes how the packets are de-
livered from the RNC to the User Equipments (UE) and introduces a queueing
network model of the system. Section 3 summarizes the concept of the approxi-
mate throughput calculation and describes in detail the solution of the queuing
network model of the system. A numerical example is provided in Section 4,
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finally Section 5 concludes the paper.

2 System overview and the equivalent queuing
model

The overview of the radio access network configuration in case of HSDPA service
is shown in Figure 1. After header compression in the Packet Data Convergence
Protocol (PDCP) layer, the incoming data (TCP/IP) packets are segmented and
encapsulated by the RLC AM entity. These segments (PDUs) are scheduled by
the MAC-d layer according to the HSDPA flow control commands. The RLC
entity is actively polling the User Equipment (UE) that is responding with Sta-
tus PDUs indicating the sequence number of lost and received PDUs. Lost
PDUs are retransmitted. The master of the HSDPA flow control is the MAC-hs
located in the Node-B. It grants resources to the HSDPA connections (MAC-d
flows) at RNC by sending High Speed Dedicated Shared Channel (HS-DSCH)
Capacity Allocation message that includes the allocation size i.e. the number of
PDUs and their maximum size (HS-DSCH Credits, MAC-d PDU Length); the
interval the data can be sent at (HS-DSCH Interval), and the validity period
of the allocation (HS-DSCH Repetition Period). This message is sent either
solicited, upon reception of a HS-DSCH CAPACITY REQUEST message from
the RNC, or unsolicited. The HS-DSCH Frame Protocol (FP) assembles a
frame out of the scheduled PDUs as it is specified in and transfers it to the
ATM Adaptation Layer type 2 (AAL2), where these frames are segmented to
45 bytes, and encapsulated into Common Part Sublayer (CPS) packets. The
size of the CPS-Packet header is 3 byte thus the maximum size of one packet is
48 byte. The CPS-Packets are eventually assembled into CPS PDUs and sent
to the destination via the Virtual Channel Connection (VCC). The CPS-PDU
header is one byte long thus at maximum 47 CPS-Packet bytes can be fitted
into one Asynchronous Transfer Mode (ATM) cell. As queues are intrinsic to
the HSDPA system, a natural approach to model the TCP RTT (Round Trip
Time) – that is an important parameter with impact on the overall TCP per-
formance – is to create an equivalent queuing model. Accordingly, the potential
bottleneck points that are dominating the downlink delay has to be identified
(in case of mobile services the users are mainly downloading content to their mo-
biles causing loaded system in downlink). The developed model focuses on the
downlink performance, whereas the uplink delay is modelled with a constant
delay. Packets drop (p) can appear at these bottleneck points due to buffer
overflow or when the maximum number of retransmissions is reached. There
are three such points in the system:

• The buffers of the RLC layer where the RLC PDUs (resulted from the
segmentation of the user packets) are stored until a positive acknowledge-
ment arrives or the maximum number of retransmissions is reached and
the RLC AM entity discards them. The RLC buffers are scheduled by
the MAC-d layer based on the credits received from the Node-B (MAC-hs
entity). These credits are calculated in order to maximize the air inter-
face throughput not necessarily taking into consideration the congestion
situation over the Iub links thus the RLC layer can easily overload the
transport network. In this model it is assumed that the uplink delay of
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the HS-DSCH CAPACITY ALLOCATION message is zero.

• The buffers of the AAL2/ATM transport network. As the transport net-
work is a shared and limited resource, congestion may occur leading to
increased delay and eventually to packet drops. In this paper the trans-
port network is modelled with one buffer corresponding to the bottleneck
link.

• The MAC-hs buffers in Node-B. There is one buffer per each MAC-d flow
(HSDPA connection) that is storing the MAC-d PDUs waiting for trans-
mission. The amount of the MAC-d PDUs that can be transmitted in a
2ms long TTI depends on the reported channel quality indicator (CQI).
In case of transmission failure, the MAC-d PDUs are retransmitted. If
the maximum number of retransmissions is reached the MAC-d PDUs are
discarded by the HARQ and the RLC ARQ will handle the retransmis-
sions.

An overview of the queueing network model of the system is shown on Fig-
ure 2. The three components of the queuing model i.e. the RLC buffers, the
transport buffers and the MAC-hs buffers are located at different protocol lay-
ers. Each flow has a dedicated buffer at the RLC layer that stores the PDUs
resulted from the segmentation of the TCP packets. The MAC-d schedules
these buffers independently based on the credits received from the Node-B.
PDUs are discarded in case of buffer overflow or when the maximum number of
retransmissions is reached. Each PDU is stored in the buffer until the positive
acknowledgement is received or when PDU Discard procedure is executed by
the RLC.

Figure 2: The overview of the queueing network model of the system

The transport network is modelled by one buffer representing the bottleneck
link. ATM cells are discarded at buffer overflow. At the Node-B, each MAC-d
flow has a dedicated buffer. At each 2 ms TTI the Proportional Fair (PF) sched-
uler is selecting the buffer to be served based on the average throughput of each
flow and their instantaneous channel quality. Upon an erroneous transmission
over the air interface, the PDUs are retransmitted until the maximum number
of transmissions is reached.
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3 The concept of the TCP throughput calcula-
tion

There are several models available to calculate the TCP throughput. The most
popular one is the so-called Padhye model [11]. This model essentially gives
a simple formula that expresses the TCP throughput (B) as a function of the
packet loss (p) and round trip time (RTT )

B (p,RTT ) =






1−p
p +E(W )+Q̂(E(W )) 1

1−p

RTT( b
2 E(Wu)+1)+Q̂(E(W ))T0

f(p)
1−p

, if E (Wu) < Wmax

1−p
p +Wmax+Q̂(E(W )) 1

1−p

RTT( b
8 Wmax+ 1−p

pWmax
+2)+Q̂(Wmax)T0

f(p)
1−p

, otherwise.

(1)
In the formula p denotes the packet loss probability, b is the number of packets
covered by one acknowledgement (b = 1 is assumed in this paper), T0 is the
timeout (we use T0 = 1.5 sec), RTT is the Round Trip Time of the packets, Wmax

is the maximum Congestion Window size, E (Wu) is the mean Unconstrained
Window size given by:

E (Wu) =
2 + b

3b
+

√
8 (1− p)

3bp
+

(
2 + b

3b

)2

.

Q̂ (w) is the probability that a loss in a window of size w is due to Timeout,
calculated with the formula:

Q̂ (w) = min



1,

(
1− (1− p)3

)(
1 + (1− p)3

(
1− (1− p)w−3

))

1− (1− p)w



 .

Finally, f (p) is a simplifying notation:

f (p) = 1 + p + 2p2 + 4p3 + 8p4 + 16p5 + 32p6.

Thus, the two unknown parameters of the TCP throughput calculation are
the Round Trip Time (RTT ) and the packet loss probability (p). Since the
major part of the RTT is spent as waiting time in the buffers of the network
devices, and the packet loss occurs due to saturated buffers or air interface errors,
we model the HSDPA system by a queueing network. To reduce complexity,
we decided not to involve the micro-behaviour of the TCP flow control into
the model. Instead, we consider the TCP traffic as a flow of packets having a
constant intensity.

By assuming a constant rate TCP traffic, the RTT and p are calculated
using the queueing network model of the system described in detail in the next
sections. Once the RTT and p are known, the TCP traffic intensity correspond-
ing to p and RTT can be calculated with the Padhye model. This value is not
necessarily equal to the TCP rate assumed initially. In this case the initially
assumed TCP rate is adjusted, and throughput calculation is repeated until
the equilibrium is reached. The output of the method will be the TCP rate
B∗ that – when loaded into the queueing network model – results in a p and
RTT such that the Padhye model provides the same TCP throughput, thus
B∗ = B (p,RTT ) .
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3.1 Overview of the calculation algorithm

As described in Section 3, the TCP throughput over HSDPA is calculated as
the load (λTCP) that carried over the network causes a Round Trip Time RTT
and packet loss p such that the Padhye formula results in the same throughput
i.e. B (p,RTT ) = λTCP.

This equilibrium is reached by a simple interval bisection method summa-
rized in Algorithm 1. At the beginning of the algorithm, the lowest possible
throughput is initialized to a1 = 0. The mean TCP throughput can not be
larger than the average air interface throughput, thus the upper limit of the
interval bisection can be initialized to E (SNode-B). In each step, the queueing
network shown on Figure 2 is analysed, the packet loss and mean RTT is calcu-
lated. The upper and lower bounds of the interval are adjusted depending on the
relation of the actual TCP throughput assumption, λTCP and the throughput
resulted by the Padhye formula λPADHYE = B (p,RTT ).

Algorithm 1 The TCP Throughput Calculation Algorithm
INPUT: sysparam//the system parameters are listed in Table 1
OUTPUT: γ//the TCP throughput
1: a1 = 0//the lowest possible throughput value
2: a2 = E (SNode-B)//the upper bound is the average air interface throughput
3: while |λTCP − λold| > ε do //the loop of the bisection method
4: λTCP = a1+a2

2
5: p,RTT = QN Analysis (λTCP)
6: λPADHYE = B (p,RTT ) · KfT /fM //Apply Padhye model as in (1)
7: if λPADHYE > λTCP then
8: a1 = λTCP

9: else
10: a2 = λTCP

11: λold = λTCP

12: return γ = λfM//harmonize units

The parameters p and RTT are calculated by the analysis of the queueing
network (Figure 2). The users are assumed to be identical, the calculation is
performed for one selected (tagged) user. Accordingly the queueing network
seen by the tagged user consists of three nodes: the RLC buffer, the transport
(ATM) buffer and the MAC-d buffer at the Node-B. This queueing network does
not belong into the class of queueing networks for which exact solution is known,
thus a traffic decomposition based approximate analysis has been developed. [4]
The analysis starts with the first queue. In addition to the performance measures
of interest, the output process has to be approximated, too. This approximate
departure process is the arrival process to the next queue in the network, that
can be analysed in the same way. The calculation is repeated until the last
queuing node is analysed. As the network has feed back traffic (RLC loss is
modelled as if the lost PDUs would be re-inserted into the RLC buffer), an
iterative solution method has to be used. Initially it is assumed that there is no
feed back traffic; the whole network is analysed and the feed back traffic (amount
of PDUs that must be retransmitted) is calculated. In the next iteration step
this feed back traffic is taken into consideration during the analysis of the first
queue thus in the whole queuing network model. The iterations are repeated
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Description notation value
The number of HSDPA users K 16
The RLC buffer size [PDUs]

L
1000

Transport node buffer size [ATM cells] 2000
Node-B buffer size [PDUs] 1000

Maximum number of RLC (re)transmissions R 6
Maximum number of HARQ (re)transmissions M 3

TCP packets acknowledged by one ACK b 1
TCP Timeout interval T0 1.5 sec

Maximum TCP Congestion Window size Wmax 48KB
Block Error Rate over the air interface Pe 0.01

Prob. of two successive erroneous transmissions Ps 0.001

Service distribution at the air interface Pr
“
Ŝ = k

”
from trace file

TCP packet size fT 1500 byte
Size of MAC-d and RLC PDUs fM 336 bit

Accuracy parameters ε, ε′ 1
Transport link capacity C

Table 1: The parameters contained in sysparam

Algorithm 2 λout = QN Analysis (λin)
INPUT: λin //the load generated by the TCP sources
OUTPUT: p,RTT//packet loss and mean round trip time
1: λ′ = λin

K //the throughput of the tagged HSDPA user
2: while |λ′ − λ′old| > ε′ do //loop to find the equilibrium value of λ′

3: (PRLC,E (TRLC) , DRLC) = solve rlc (λ′)//see Section 3.2
4: (PTr, E (TTr) , DTr) = solve tr (C, DRLC)//see Section 3.3
5: (PNode-B, E (TNode-B) ,λU ) = solve node-b (S, DTr)//see Section 3.4
6: pL ⇐ (PTr, PNode-B, PHARQ)//the loopback probability given by (15)
7: p̂ =

PR
k=1(1−pL)k−1pLPR+1
k=1 (1−pL)k−1pL

//the probability that the PDU is resent by RLC

8: λ′ = λin
K + p̂ · pL · λA

9: λ′old = λ′

10: (Du, Ds) ⇐ (PTr, PNode-B, PHARQ,E (TRLC) ,E (TTr) , E (TNode-B))//(19)

11: RTT =
∑R

k=1
pk−1

L (1−pL)

1−pR
L

((k − 1) Du + Ds)//the RTT derived in (20)

12: p = 1− λU
λ //the TCP loss probability given in (21)

95 L. Bodrog, G. Horváth and C. Vulkán
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until the difference in the results will not exceed the accuracy parameter. The
algorithm is summarized on Algorithm 2.

3.2 The model of the RLC buffer

The model of the RLC layer (referred to as solve rlc in line 3 in Algorithm 2)
is based on the observation that the service process of the RLC buffer (thus,
the arrival process of the RLC PDUs to the transport network) is controlled
by the HSDPA flow control. To achieve efficient air interface resource usage,
the Node-B grants credits to each flow based on the reported channel quality
and the measured average throughput of the flows. At each HSDPA scheduling
interval the MAC-d scheduler will transmit the amount of PDUs defined by
the received credits. In this paper we assume that scheduling interval is 10 ms
(that is a typical value), thus PDUs are scheduled at each TTIRLC = 10 ms.
The calculation of the amount of PDUs that can be sent at a given scheduling
instance is based on the assumption that the Node-B has a perfect knowledge on
the air interface conditions, thus that the distribution of the number of MAC-d
PDUs that can be transmitted over the air-interface at each 2ms HSDPA TTI
is known. (See Section 3.4).

Based on this assumption the number of PDUs the MAC-d scheduler is
transferring during a 10 ms time slot (denoted by SRLC) is given by:

SRLC =
5∑

1

SNode-B.

The arrival process to the RLC buffer consists of the incoming traffic to the
system (having an intensity of λin/K) and the PDUs that are retransmitted by
the RLC AM entity (this is how RLC losses, denoted by λFB are modelled).
λFB is calculated with the equation (17). At this calculation step Poisson traffic
with a total arrival rate of λ′ is assumed:

λ′ =
λin

K
+ λFB.

The distribution of the number of packets entering arriving to the RLC buffer
in a 10 ms interval is calculated as follows:

Pr (ARLC = k) =
(λ′TTI RLC)k

k!
e−λ′TTIRLC k = 0, 1, 2, . . . (2)

The distribution is truncated at N such that the probability of the cut-off part
of the distribution is reasonably small.

The queue length evolution embedded at TTI RLC long time slots is then
modelled by a discrete time Markov chain (DTMC) according to the following
evolution equation:

Xn+1 = (Xn + An+1 − Sn+1)
+ ,

where Xn+1 is the queue length, An+1 is the number of arrivals and Sn+1 is the
number of packets served in the n + 1st time slot. (·)+ denotes max (0, ·) .
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The ijth element of the transition probability matrix (P ) of the DTMC is
given by:

pij =






∞∑

k=0

Pr (ARLC = k) Pr (SRLC = j − i + k) i < L−N

L−i∑

k=0

Pr (ARLC = k) Pr (SRLC = i− j + k) +

+ Pr (SRLC = L + 1− j)
N∑

k=L−i+1

Pr (ARLC = k)

i ≥ L−N.

L is the length of the RLC buffer, N is the support of the arrival distribution.
In the first case the queue level is as low that no loss can happen, thus the
transition probability equals the probability that there were j − i more packets
served than arrived. In the second case, the first (second) term corresponds to
arrival sizes without (with) loss, respectively.

The steady state solution (π) of the DTMC is given by the solution of the
linear equation system

πP = π

π




1
...
1



 = 1.

Having the steady state solution, the loss probability at the RLC buffer is
calculated as the ratio of the mean number of lost and of the mean number of
arrived PDUs during a TTI RLC = 10ms time slot:

PRLC =

L∑

i=0

πi

N∑

j=0

max (0, i + j − L) Pr (ARLC = j)

L∑

i=0

πi

N∑

j=0

j Pr (ARLC = j)

. (3)

The system time of the PDUs in the RLC buffer is calculated using Little’s
theorem:

E (TRLC) =
E (XRLC)

(1− PRLC) E (ARLC)
TTI RLC +

1
2
TTI RLC, (4)

where E (XRLC) is the mean queue length. Since this is a discrete time model
but arrivals can happen in continuous time, the model does not differentiate
between arrivals at the beginning of the scheduling interval and at the end of
it i.e. as they would not have different system times. Assuming that the arrival
instants are uniformly distributed over the scheduling interval, the system time
computed from the embedded DTMC is increased with the half of the interval.

During the analysis of the queueing network, the departure process from the
RLC buffers has to be calculated as this is the arrival process to the transport
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UKPEW 2008 – http://ukpew.org/



buffer. We assume that the departures are independent and identically dis-
tributed (i.i.d.), with the distribution of the number of departing packets in a
TTI RLC interval computed by:

Pr (DRLC = k) =
L∑

i=0

πi

∞∑

j=k+1−i

Pr (ARLC = j) Pr (SRLC = k)+

+
L∑

i=0

πi Pr (ARLC = k − i)
∞∑

j=k

Pr (SRLC = j) .

(5)

This expression consist of two terms: the first corresponds to the case when there
are enough packets in the buffer, the number of departing packets is determined
by the number of packets the server can serve whereas in the second term the
server could serve more packets than the buffer content.

3.3 The model of the transport buffer

In this paper we consider an AAL2/ATM based transport network (the trans-
port link buffer model and its solution is referred in line 4 of Algorithm 2). The
AAL2 layer is multiplexing the user connections into one Constant Bit Rate
(CBR) VCC, with capacity C.

The ATM switch works in continuous time in contrast with the MAC-d and
PF schedulers that are working in time slotted manner. In order to avoid mixing
the continuous and discrete models, we decided to apply a discrete time model
for the transport buffer as well. The RLC buffer is scheduled with TTI RLC =
10ms transmission interval and the PF scheduler in Node-B is forwarding PDUs
with a TTI Node-B = 2ms. The selected time slot for the transport buffer is the
minimum of these two e.g. TTI Tr = 2 ms is used to approximate the transport
buffer mainly because this value allows finer resolution in time than a model
with 10 ms interval. Another assumption is that in the model the transport
buffer stores and transmits RLC PDUs instead of ATM cells. Since the RLC
PDUs are the “data units” in other parts of the network, using the same data
unit in the transport buffer simplifies the calculation significantly.

The distribution of the number of arrivals in a time slot is derived from
the distribution of the number of departures from the RLC layer (DRLC). The
departure process of the RLC corresponds to a 10 ms TTI RLC, while the trans-
port buffer model has a 2 ms TTITr. Thus, as a first step a conversion has
to be applied between the MAC-d scheduling interval and the transport time
slot, having a departure distribution from the RLC layer in a five-times longer
TTI RLC. The following binomial assumption is applied:

Pr
(
D2mstr = k

)
=

∞∑

i=k

Pr (DRLC = i)
(

i

k

)(
1
5

)k (
1− 1

5

)i−k

,

where Pr(D2mstr) is the probability of k arriving packets in a TTITr time period
if there were i arrivals in the TTI RLC time period or in other words to choose k
arrivals from i with probability 1

5 – the quotient of the lengths of the two kinds
of TTIs.

When calculating the distribution of the number of arrivals to the transport
buffer, the whole traffic aggregate has to be considered each user connection is
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multiplexed into one VCC:

ATr =
K∑

1

D2mstr ,

where K is the number of HSDPA users.
The service time of the RLC PDUs in the transport buffer is calculated as

D =
RLC packet size with overheads

C
.

The transport overheads are considered with following formula:

RLC packet size with overheads = fM ·
(

53
47

fM + 24
fM

E (DRLC) fM + 72
E (DRLC) fM

)

︸ ︷︷ ︸
overhead

.

The overhead consists of the ATM header (40 bits) plus the 8 bit long CPS
PDU Start Field (53/47), the 24 bit long CPS Packet header per an RLC PDU
( fM+24

fM
) and finally the 72 bit long HS-DSCH FP frame header that carries

E (DRLC) RLC packets in an average.
In our discrete system having TTI Tr long time slots the number of PDUs

served in a time slot can either be F =
⌊
TTITr

D

⌋
or F + 1, according to the

following probabilities:

Pr (STr = F ) = 1−
(

TTI Tr

D
− F

)

Pr (STr = F + 1) =
TTITr

D
− F.

The queue length can be modelled by a DTMC similar to the one we applied
for the RLC buffer, i.e.,

Xn+1 = (Xn + An+1 − Sn+1)
+ , (6)

where Xn+1 is the queue length, An+1 is the number of arrivals and Sn+1 is the
number of PDUs served in the n + 1st time slot.

Based on the distribution of the number of arrivals and served PDUs we
can create the transition probability matrix of the DTMC such that the ijth
element will be calculated in the same way as in the case of the RLC buffer:

pij =






∞∑

k=0

Pr (ATr = k) Pr (STr = j − i + k) i < L− (N − F )

L−i∑

k=0

Pr (ATr = k) Pr (STr = i− j + k) +

+ Pr (STr = L + 1− j)
N∑

k=L−i+1

Pr (ATr = k)

i ≥ L− (N − F ) .
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The computation of the loss probability is similar to the one applied at the
RLC modeling:

PTr =

L−F∑

i=0

πi

N∑

j=0

max (0, i + j − L) Pr (ATr = j)

L−F∑

i=0

πi

N∑

j=0

j Pr (ATr = j)

. (7)

The numerator is the expected number of lost PDUs and the denominator is
the expected number of PDUs received correctly.

The system time of the PDUs in the transport buffer is calculated based on
Little’s theorem as (see (4)):

E (TTr) =
E (XTr)

(1− PTr) E (ATr)
TTI Tr +

1
2
TTI Tr. (8)

The departure process is calculated similar to the calculation of the same
parameter in case of the RLC buffer

Pr (DTr = k) =
L−F∑

i=0

πi

∞∑

j=k+1−i

Pr (ATr = j) Pr (STr = k)+

+
L−F∑

i=0

πi Pr (ATr = k − i)
∞∑

j=k

Pr (STr = j) .

(9)

3.4 The Model of the MAC-hs Buffers

In this paper it is assumed that the MAC-hs buffers are scheduled by a Pro-
portional Fair algorithm, that is making the scheduling decisions based on the
instantaneous channel quality and the average throughput of the users with the
scope to achieve high level of resource usage and in the same time to provide
high level of fairness to the users. The scheduler is selecting one user for trans-
mission at each scheduling instance (at every TTI Node-B = 2 ms). The reported
Channel Quality Indicator (CQI) is defining the modulation and coding scheme,
thus the number of MAC-d PDUs that can be transmitted during a TTI. Since
the channel conditions can change quickly, temporary traffic overload can occur
in the Node-B. The arriving PDUs are stored in the MAC-hs buffers (there is a
separate buffer for each flow).

The modeling of the HSDPA air interface model is out of the scope of this
paper. Instead, the MATLAB based tool of the Eurane project (see [6]) has
been used in order to obtain the distribution of the number of MAC-d PDUs
that can be transmitted in a TTI (P (Ŝ = k)). This distribution has been
generated by assuming saturated buffers without taking the impact of HARQ
into consideration [9].

To obtain the service process of the MAC-hs buffer first the effect of HARQ
is included in the model. According to [1,2] the probability of properly decoding
the packet at the user side and thus the probability of the error free transmission
after j trials is as follows:

Pj =

{
1− Pe, j = 1
P j−1

e P j−2
s (1− PePs) , j > 1.
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The meaning and the default values of Pe and Ps are listed in Table 1. Consid-
ering that the maximal number of trials is M the expected number of retrans-
missions till success is as follows:

E(H) =
M∑

j=1

jPj + M



1−
M∑

j=1

Pj



 ,

thus the probability that the time slot is lost due to a HARQ loss is:

Ptl = 1− 1
E(H)

.

Finally, the distribution of the number of MAC-d PDUs that can be trans-
mitted in a TTI taking the HARQ losses also into consideration is:

Pr (SNode-B = k) =





(1− Ptl) Pr

(
Ŝ = k

)
+ Ptl k = 0,

(1− Ptl) Pr
(
Ŝ = k

)
k %= 0.

(10)

The distribution of the number of arrivals to the MAC-hs buffer is calculated
by assuming that the packets arriving from the transport network are directed
to the buffer of the tagged user according to a random choice with probability
1/K; resulting in the following binomial distribution:

Pr (ANode-B = k) =
∞∑

i=k

Pr (DTr = i)
(

i

k

)(
1
K

)k (
1− 1

K

)i−k

.

Contrary to the other two nodes the queue length evolution of the MAC-hs
buffer is

Xn+1 = (Xn − Sn+1)
+ + An+1,

This means that only those MAC-d PDUs can be served by the PF scheduler
that have arrived before the beginning of TTI. The ijth element of the transition
probability matrix is

pij =






j−1∑

k=0

Pr (ANode-B = k) Pr (SNode-B = i− j + k) +

+ Pr (ANode-B = j)
∞∑

k=i

Pr (SNode-B = k)

i < km

∞∑

k=0

Pr (ANode-B = k) Pr (SNode-B = j − i + k) i ≥ km.

After the computation of the steady state solution, the loss probability is
calculated as the ratio of the lost and arrived PDUs in a TTI as:

PNode-B =

L∑

i=0

πi

∞∑

j=0

max (0, i + j − L) Pr (ANode-B = j)

L∑

i=0

πi

∞∑

j=0

j Pr (ANode-B = j)

. (11)
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UKPEW 2008 – http://ukpew.org/



PNode-B is the loss probability of PDUs due to buffer buffer overload and tail
drop at the Node-B. However, at the Node-B the buffer overload is not the only
event that leads to packet loss. If the air interface quality is bad, and the HARQ
mechanism fails, the MAC-hs discards the PDU from the corresponding HARQ
register and the retransmission of the PDUs falls back to the RLC layer if the
maximal number of retransmissions (M) has been reached. The probability of
such events is denoted by PHARQ and computed as:

PHARQ = 1−
M∑

j=1

Pj . (12)

The system time of the MAC-hs buffer is calculated using Little’s theorem
as

E (TNode-B) =
E (XNode-B)

(1− PNode-B) E (ANode-B)
TTI Node-B +

1
2
TTI Node-B, (13)

where E (X) is the mean queue length, and the addition of the extra time of
half-TTI Node-B in the second term has the same explanation as in case of the
RLC and transport network models.

For the queueing network analysis the departure intensity of the Node-B
buffer is needed. The number of MAC-d PDUs per TTI Node-B equals the mini-
mum of the number of packets in the buffer and the number of packets that can
be served. This gives:

λU =
1

TTI Node-B

L∑

i=0

πi

∞∑

k=0

Pr (SNode-B = k)min (i, k) . (14)

3.5 The Feed-back Link

In our queueing model the PDUs lost at the different parts of the network are
considered as they where entering the RLC buffer again for repeated transmis-
sion. The feed-back link on Figure 2 “collects” these lost packets. In this section
we calculate the traffic intensity on the feed-back link. This traffic (with Poisson
assumption [4]) is added to the traffic entering the network during the analysis
of the RLC model.

As a first step the probability of a PDU loss (due to any reason) in the
network after leaving the RLC buffer is calculated. This probability is denoted
by pL and computed by:

pL = PTr + (1− PTr)PNode-B + (1− PTr) (1− PNode-B)PHARQ. (15)

It can happen that a retransmitted PDU is lost. After a given number of
RLC level retransmission attempts (R) that equals the maximum number of
RLC retransmissions the PDU is discarded and loss is detected by the TCP
flow control. In this case this PDU does not enter the RLC buffer again (as
long as the higher layer entity does not re-send it). The probability that a
PDU loss did not reach the maximal number of retransmission attempts thus it
increases the load of the RLC buffer is calculated with:

p̂ =
∑R

k=1 (1− pL)k−1 pL∑R+1
k=1 (1− pL)k−1 pL

(16)
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(we assumed truncated geometrical distribution for the distribution of the num-
ber of retransmissions).

With the above considerations the traffic of the feed-back link is computed
by:

λFB = p̂ · pL · λA, (17)

where λA denotes the mean departure rate of the RLC buffer.

3.6 The TCP Level Packet Loss and the RTT

In this section we describe the calculation of the TCP level performance mea-
sures based on the buffer-wise performance measures (given by equations (12),
(3), (4), (7), (8), (11) and (13)).

The delay of one packet assuming that it has not been lost in the system is
given by:

Ds = E (TRLC) + E (TTr) + E (TNode-B) . (18)

If it has been lost somewhere, the mean delay can be computed by:

Du = PTr E (TRLC) + (1− PTr)PNode-B (E (TRLC) + E (TTr))+
+ (1− PTr) (1− PNode-B)PHARQ·
· (E (TRLC) + E (TTr) + E (TNode-B)) .

(19)

If a packet has been retransmitted k times till successful transmission, the mean
round trip time can be calculated as the sum of the mean delays of k − 1
unsuccessful transmissions and one times the delay of a successful transmission.
Using the geometric distribution assumption for the number of retransmission
attempts again we have

RTT = DUL +
R∑

k=1

pk−1
L (1− pL)

1− pR
L

((k − 1) Du + Ds) , (20)

where DUL denotes the mean delay in uplink direction considered to be constant
as the UTRAN is typically not congested in uplink direction.

The loss at TCP layer is simply calculated by one minus the ratio of the
traffic entering and leaving the system:

p = 1− λ

λU
(21)

4 Numerical results

The accuracy of the TCP throughput method presented in this paper has been
evaluated with a numerical example. A simulation scenario has been created
based on a topology consisting of one RNC and one Node-B. It is assumed
that there is only one MAC-d flow and one priority queue per HSDPA user.
The scheduler is Proportional Fair Scheduler. The number of HARQ processes
is six; the maximum number of MAC-hs retransmissions is three, whereas the
maximum number of RLC retransmissions is six. The number of HS-DSCH
codes per cell is five; code multiplexing is not implemented. HSDPA users are
connected to the Node-B via HS-DSCH in downlink and via DCH in uplink.
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Profile Ped-A
Speed 3 km/h

Distance 400m
Trace length 900 s

Table 2: The parameters of the air interface profile

Each HSDPA UE is of category 5/6. The Iub interface and the user plane of the
Radio Layer protocols (MAC-d, MAC-hs, RLC, PDCP) are implemented in de-
tail. The transport network of the Iub consists of one CBR VCC. HSDPA users
are originating file (ftp) downloads from servers located on the Internet. The
transport protocol was TCP Reno; the maximum advertised window size was
48 kbytes; the maximum TCP/IP packet size was set to 1500 bytes. The HSDPA
UE reports the observed channel quality (CQI) to the Node-B. Based on this,
the amount of data to be sent to the UE is defined. The radio channel condition
is simulated separately for each UE. Negative – when the Silence to Noise Ratio
(SNR) is below the required threshold – or positive acknowledgement is gener-
ated upon reception of a MAC-hs frame. The CQI estimation error is modelled
with a constant delay of 6 ms. Users are modelled with ITU-T Pedestrian A
model, velocity 3 km/h, assuming that chase-combining is implemented in the
UEs. The distance of the users from the Node-B was set to 400 m. The SNR is
calculated considering the followings: distance loss according to Okumara-Hata
model for urban cell with base station antenna height of 30m, mobile antenna
height of 1.5 m and carrier frequency of 1950Mhz [8]; multi-path (fast) fading;
Rake receiver assuming that channel estimation is ideal and the power levels
of all paths are known; shadow (slow) fading (log-normal distribution corre-
lated in time [5]); constant Node-B antenna gain constant (17 dBi); inter-cell
interference (−70 dBm) and intra-cell interference (30 dBm).

In the analytical model the air interface trace file has been generated with
the MATLAB scripts of the Eurane project (see [6]) with parameters defined
by Table 2.

Next, the distribution of the number of RLC PDUs that can be transmitted
by the Node-B (denoted by Ŝ in the paper) is extracted and the analysis method
is executed at several link capacity settings (Figure 3).

The figure confirms that the error of the approximation is below 10%. The
most important application of analytical throughput computation methods like
the one presented in this paper is the transport link dimensioning. During the
link dimensioning, the mean throughput (Figure 3) is calculated and the optimal
transport link capacity is selected that guarantees the required level of service.
The optimal link capacity is around the knee point i.e. where the TCP through-
put curve in function of the transport capacity becomes horizontal. Above this
point the increase of link capacity does not introduce an increase in the TCP
throughput, while below this point the air interface can be underutilized. The
optimal link capacity obtained from the analysis and simulation are close to
each other, thus our method can be used for transport link dimensioning with
a lower computational effort compared to simulations.
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Figure 3: Comparison of the analysis and simulation results

5 Conclusion

In this paper we described an approximation model of the TCP throughput
over HSDPA. We identified the relevant congestion points in the system that
are having dominant impact on the TCP throughput and developed Markov
models to calculate the performance measures. An iterative solution method is
provided to solve the queueing network model of the system. The model have
been evaluated with a numerical example to evaluate their accuracy and to show
that it can be used for the transport link capacity dimensioning of the mobile
backhaul.
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3 Fast Simulation of SANs Using POR Technique 
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ENSH!

80'8!8'P4!%'5+-#!6'%$'1(4!-5()!;%-#!$#:-%8'58!9:'<4!-;!#-+4(!!O>!?8!$9!<(4'%!80'8!!

OHE
N

#$; 88 3B ! ENTH!

D0$9!04(:!%4#'$5$5,!:'%8!9$#7('84!<-%%4<8()!%49:4<8!8-!%'%4!46458!46'(7'8$-5>!

Example. "!F"G!#-+4(!$9!90-C5!$5!g$,7%4!N@!C0$<0!#-+4(9!'!%'%4!46458!C$80!'!(-C!

+$98%$178$-5!-;!O>OOON>!?5!80$9!#-+4(!#!9$#:()!<'5!14!+4;$54+!'9!!

HomS@V@RE

H@W@N@qE

&$"&$"&$"

&$"&$",),+".&.,@ .# ! EN^H!

05&$,N!0'9!-54!8-P45!$5!804!$5$8$'(!98'84!'5+!'((!-804%!:('<49!'%4!4#:8)>!F-@!$5$8$'(!98'84!

$9!QN@!O@!O@!O@!OU>!G-C!(48!79!<-59$+4%!$5+$<'8-%!;75<8$-5!:-$58!8-!8-P45!$5!05&$,S!80'8!$9!

'!%497(8!-;!<-#:(48$5,!%'%4!46458!'<8$6$8)>!!N('5+!!O(%49:4<8$64()(+4;$54!'9!

HoW@N@qE

HoS@V@RqE

W

N

&$"&$",),+".&.,

&$"&$"&$"

.#;

#; !
EN]H!

F-@!"N('5+!"O(C$((!14!
? @
? @W@N@

S@V@R

W

N

&$"&$",),+".&.,

&$"&$"&$"

.#A

#A !
ENaH!

?8!$9!<(4'%!80'8!BG#RH(:-$589!8-!<-#:(48$5,!-;!&$"SJ(&$"TJ(&$"U>!"(9-!<(4'%!80'8!FR!9$#:()!

<'5!14!<-#:784>!

!
g$,7%4!N>!"!F"G!#-+4(!C$80!'!%'%4!46458!

!
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D'1(4!N>!"<8$6$8$49!-;!F"G!#-+4(!$5!g$,7%4!N!

Timed Activity  Distribution Parameters 

;$"S( Z=:-5458$'(!NOO!

;$"T( Z=:-5458$'(!NO!

;$"U( Z=:-5458$'(!NO!

;$"N( Z=:-5458$'(!NO!

=&.,V>),+"( Z=:-5458$'(!O>OOON!

!
&798!'9!('98!984:!;-%!79$5,!IJK!C4!+4;$54!:%-1'1$($8)!Fb!'9!%4B7$%4+!$5!ENSH>!
[48!79!+4;$54!'!54C!%4C'%+!6'%$'1(4!=R!'9!

*+

*
,
-

.

.
#
5
"

17+$"'#+'4057!,

17+$"'#+.,-&.304&./
= <0

O

HE !
EWOH!

D0'8!0! $9! '!:('<4! $5! 948!q05&$,TJ(05&$,Uo! E'5!75$#:-%8'58!:'%8H!'5+!4&./( G0H! %487%5!
57#14%!-;!8-P45!$5!0>!g-%!<-#:78$5,!=R!F"G!#-+4(!#798!9$#7('84!$5!5-%#'(!#-+4>!

?5! 80$9! 984:! ;'98! 9$#7('8$-5! +-49! 5-8! %4B7$%4@! 14<'794!=R! +-49! 5-8! <-58'$5! '5)! %'%4!

46458>!K497(8!-;!=R!$9!804!6'(74!-;!:%-1'1$($8)!Fb!+4;$54+!$5!ENSH>!!"5!?#:7(94!%4C'%+!
<'5!14!794+!;-%! 80$9!:7%:-94!%49:4<8$64()>!n-C464%!C4!+-5b8!+4;$54! 80'8! ;-%!9$#:(4%!

$#:(4#458'8$-5>!

"9!IJK!90-C9!#-+4(!1%4'P9!$58-!8C-!:'%89!!N('5+(!OK(!W!$9!804!$#:-%8'58!:'%8!'5+!
#798!-194%64!#-%4!80'5!(!N>!!N!<'5!9$#7('84!5-%#'(()!*78!'1-78!(!W!80'8!<-58'$5!,-'(!

-;! 9$#7('8$-5!:%-1'1$($8)!FR! 04(:!79! 8-! 498$#'84! %497(8! $5!<-%%4<8!#-+4! 804%4;-%4!C4!

0'64!'!54C!F"G!#-+4(!80'8!-5()!<-58'$5!948!!O!'5+!"OK(G4C!F"G!#-+4(!-;!g$,7%4!N!
$9!90-C5!$5!g$,7%4!W>(!

!

!

g$,7%4!W>!G4C!F"G!#-+4(!-;!g$,7%4!N!;-%!79$5,!IJK!

4 Applications and Results 

?5! 80$9! 94<8$-5!C4!:%49458! 804! %497(89!-;!79$5,!-7%!:%-:-94+!#480-+!-5! ;-7%! 9'#:(4!

F"G!#-+4(9>!D-!46'(7'84!804!:%-:-94+!#480-+@!C4!0'64!794+!804!/k1$79!#-+4(($5,!

8--(>!g$%98@!'!9$#:(4!F"G!#-+4(!C$80!-5()!-54!%'%4!46458!$9!9$#7('84+>!D045@!'5-804%!

#-+4(!C$80!9-#4!-804%!5-%#'(!464589!$9!84984+>!!g$5'(()@!'!80$%+!#-+4(!C$80!8C-!%'%4!

464589!'5+!9-#4!$584%498$5,!:%-:4%8$49!$9!84984+>!"5+!;$5'(()@!C4!0'64!<0-945!'!9'#:(4!

8-!<-#:'%4!804!:%-:-94+!#480-+!C$80!804!?F!84<05$B74>!

4.1 Example 1: A Simple Model 

"9!804!;$%98!4='#:(4!'!9$#:(4!F"G!#-+4(!$9!84984+>!D0$9!#-+4(!<-58'$59!-5()!'!%'%4!

46458!C$80!'!5-%#'(!46458!80'8!C$((!%'<4!8-,4804%>!!D04!F"G!/-+4(!$9!90-C5!$5!g$,7%4!
R!'5+!$89!:%-:4%8$49!$5!D'1(4!W!'5+!D'1(4!R>!
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!

g$,7%4!R>!"!9$#:(4!F"G!#-+4(!C$80!-54!%'%4!46458!
 

D'1(4!W>!?58$'(!#'%P$5,9!-;!F"G!#-+4(!-;!g$,7%4!R!

Place Names Initial Markings 
F5&$,N(( N!
F5&$,O(( O!
F5&$,S(( O!

!

?5!;$%98!984:!!(N!'5+(!O(#798!+4;$54f!

HoW@qE

HoV@RqE

W

N

&$",),+".&.,

&$"&$"

.#;

#; !
EWNH!

"5+!!
? @
? @W@

V@R

W

N

&$",),+".&.,

&$"&$"

.#A

#A !
EWWH!

 

D'1(4!R>!"<8$6$8$49!-;!F"G!#-+4(!-;!g$,7%4!R!

Timed Activity  Distribution Parameters 

;$"O( Z=:-5458$'(!NO!

;$"S( Z=:-5458$'(!NOO!

;$"T( Z=:-5458$'(!NO!

=&.,V>),+"( Z=:-5458$'(!O>OOOON!

!
?5!54=8! 984:!C4!+4;$54!'! %4C'%+!6'%$'1(4!'9! EWRH! ;-%!<-#:78$5,!:%-1'1$($8)!FRK(D0$9!

%4C'%+!6'%$'1(4!$9!9$#:()!+4;$54+!-5!!N!948>!

+
,
-

.

.
#

17+$"'#+'4057!,

17+$"'#+.,-&.305&$,4&./
=

O

HRE
! EWRH!

L4! 46'(7'84! 80$9! %4C'%+! 6'%$'1(4! 1)! /k1$79! #-+4(($5,! 8--(! '5+! ,48! 804! %497(8! '9!

a>OaOaO]4AOON>!G-C!C4!8498!804!-%$,$5'(!#-+4(!'5+!-7%!54C!#-+4(@!C0$<0!<-58'$59!

-5()! F5&$,N! '5+! F5&$,O! ;-%! 804! %497(8! -;! 804! %4C'%+! 6'%$'1(4! +4;$54+! $5! EWVH! E$>4>!

%4#-6$5,!;$"S!'<8$6$8)H>!

+
,
-

.

.
#

17+$"'#+'4057!,

17+$"'#+.,-&.305&$,4&./
=

O

HWE !
EWVH!

F$#:()! 80$9!54C!#-+4(! $9! <-58'$59!-5()!"O( 948(F$#7('8$-5! %497(89!-;! 80$9!#-+4(! ;-%!

46'(7'8$-5! -;! %'%4! 46458! '%4! 90-C5! $5! 8'1(4! S>! F$#7('8-%! 7949! ENAFRH! 8-! 1$'94+! 804!
498$#'8-%>! K4#4#14%! 80'8! ,-'(! $9! %'%4! 46458! -%! $5! 804! -804%! C-%+! 8-P45! $5!05&$,O>!
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F$#7('8-%!%75!1-80!8%'+$8$-5'(!'5+!IJK!#480-+9>!D04!8$#4!$9!$5!84%#9!-;!94<-5+9>!D04!

%497(89!%4:%49458!07,4!$#:%-64#4589!$5!9$#7('8$-5!8$#4!'5+!:%4<$9$-5>!D04!%497(89!'%4!

<-#:'%4+! 8-! 804! -78:789! -;! 804! !",&3*( !"&",( !#5),.! -;!/k1$79!#-+4(($5,! 8--(>! D0$9!

04(:9!79!8-!,48!'!%4'(!%4('8$64!4%%-%!80'8!90-C5!$5!('98!<-(7#5>!

!

D'1(4!V>!K497(89!-;!9$#7('8$-5!-;!F"G!#-+4(!%4:%49584+!-;!g$,7%4!R!

Method 1-P Time(s) Results Replications Confidence 

Interval 

Error 

G'M64!!

F$#7('8$-5!

A! ^WT^>VOV! a>TSS]WRTSRSZAO]! WVOTRTOOO! N>O]]^]Wa^SRZAO]! T>WNs!

IJK! O>OaOaO]Oa! N]T>]VR! a>TNaaVSOa]NZAO]! TaWNROOO! a>TOTS^]^O^^ZAOa! S>]Ns!

4.2 Example 2: A More Complex Example 

?5!80$9!4='#:(4@!804!#-+4(!0'9!9-#4!-804%!5-%#'(!464589!%755$5,!C$80!%'%4!46458@!9-!

#-+4(! $9! #-%4! 80'5! d798! 8C-! 9$#:(4! :'%89>! ?5! 80$9! #-+4(! 98$((! 804%4! $9! 5-! 46458!
<-##-5()!$5!!N!'5+!!O>!D04!#-+4(!:%494584+!$5!g$,7%4!V!-16$-79()!0'9!8C-!94:'%'84!

:'%89f!

!
g$,7%4!V>!"!F"G!#-+4(!C$80!'!%'%4!46458!

!

D'1(4!S>!K497(89!-;!9$#7('8$-5!-;!F"G!#-+4(!%4:%49584+!-;!g$,7%4!V!

Method 1-P Time(s) Results Replications Confidence 

Interval 

Error 

G'M64!

9$#7('8$-5!

A! WONW>TOa! S>OR^NaWOW^VZAO^! T^a^SOOO! S>OW]V^RVONVZAO]! S>^]s!

IJK! O>OV^TN]NR! VW>aWW! V>TS^VSWSNRSZAO^! NWNa^OOO! V>TSTNSaNWNWZAO]! W>Nas!

 

D'1(4!T>!"<8$6$8$49!-;!F"G!#-+4(!-;!g$,7%4!V!

Timed Activity  Distribution Parameters 

;$"S( Z=:-5458$'(!NOO!

;$"T( Z=:-5458$'(!NO!

;$"U( Z=:-5458$'(!NO!

;$"N( Z=:-5458$'(!NO!

=&.,V,),+"( Z=:-5458$'(!O>OOON!

!
!?5! 804!#-+4(!:%494584+!$5!g$,7%4!V@! 804!$5$8$'(!#'%P$5,9!-;!'((!:('<49!4=<4:8!F5&$,N!

'%4!24%->!F5&$,N!0'9!-54!8-P45!$5!$89!$5$8$'(!#'%P$5,9>!D04!9489!E!N@(!O@!"N@!"OH!-;!80$9!

#-+4(! 0'64! 90-C5! $5! EN]H! '5+! ENaH! 9-! d798! 944! 804! %497(8! -;! 9$#7('8$-5! $5! 8'1(4! T>!

K497(89! $5! 80$9! 8498!'%4!'(9-!<-#:'%4+!C$80!-78:789!-;! 984'+)!98'84!9-(64%!-;!/k1$79!

9-;8C'%4>!
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4.3 Example 3: Two Rare Events 

"9!80$%+!4='#:(4@!C4!<0--94!'!#-+4(!C$80!8C-!%'%4!464589>!D0$9!#-+4(!0'9!'!9:4<$'(!
:%-:4%8)!80'8!#'P4!$8!+$98$5,7$904+!;%-#!:%46$-79!9'#:(49>!?5!804!:%494584+!#-+4(@!!N(

'5+(!O(9489!0'64!9-#4!<-##-5!464589!$5!804$%!#4#14%9>!L4!$584%4984+!$5!80$9!#-+4(!

;%-#!80$9!6$4C!80'8!-5()!d798!-54!'<8$6$8)!$9!%4#-64+!;-%!;'98!9$#7('8$-5!1)!-7%!#480-+!
0-C464%!'((!:('<49!98$((!<--:4%'84!$5!9$#7('8$-5>!G-8$<4!80'8!$5!:%46$-79!9'#:(4!9-#4!

:('<49! ,-49! 'C')! ;%-#! 9$#7('8$-5>! D04!#-+4(! $9! 90-C5! $5! g$,7%4! S>! D04! $5+$<'8-%!

;75<8$-5!:-$589!8-!;'$(!464589!9-m!804!,-'(!$9!<-#:78$5,!804!;-((-C$5,!%4C'%+!6'%$'1(4f!

*+

*
,
-

.

.
)

#
17+$"'#+'4057!,

17+$"'#+.,-&.3
1&'54&./

1&'54&./

=

O

HWE

HNE
!

EWSH!

F489!!N@(!O('%4!'9!14(-C!

HoW@W@tE

H@N@N@tqE

Hot@tqE

W

N

.,0&'.1&'5.,67,!"D#8

.,0&'.1&'5.,67,!"D#8

3#+,D#8.,67,!"D#8

#;

#;
!

EWTH!

?5!804!:%46$-79!4='#:(49@!804!98'%8!98'84!-;!:'809!$9!9'#4!'9!804!98'%8!98'84!+4;$54+!;-%!

#-+4(@!178!$5!80$9!#-+4(!8-!9$#:($;)!804!:'809!C4!0'64!<0'5,4+!804!9489!'9!14((-Cf!

Hot@W@WE

H@t@N@NqE

Hot@tqE

W

N

.,67,!"D#8.,0&'.1&'5

.,67,!"D#8.,0&'.1&'5

.,67,!"D#83#+,D#8

#;

#;
!

EW^H!

?8!#4'59!80'8!804!98'%8!98'84!$9!ED#8V3#'+2J(NH!#'%P$5,!E804!('98!<-##-5!98'84!148C445!

8C-!9489H>!?5!<-58$574!C4!+4;$54!
? @
? @W@N@W@N@t

t

W

N

.,0&'..,0&'.1&'51&'5.,67,!"D#8

3#+,D#8

#A

#A !
EW]H!

"9! 9445! $5! EW]H! D#8V.,67,!"( $9! <-##-5! 148C445! 8C-! :'80! 9489! 0-C464%! '8! ('98! $8!

#-64+! 8-! "O( 948>! ?5+$<'8-%! -;! #R! :-$589! 8-! <-#:(48$5,! -;! '<8$6$8)! D#8V3#+,! '5+!
D#8V.,67,!"! $5! 94B745<4>! F$#:()! 14<'794! <-#:(48$5,! 94B745<4! 1&'5J( .,0&'.J(

D#8V%4B7498!$9!'!%'%4!46458@!F!<'5!<-#:78$5,!1)!97::-9$5,!804!'((!8-P459!$5!'35,!:('<4!

$9!#-64+! $5!1)!<-#:(48$5,! D#8V3#+,! '<8$6$8)>!"! %4C'%+!6'%$'1(4!<'5!14!+4;$54+! ;-%!

80$9!:7%:-94>!Y4;$5$8$-5!-;!80$9!6'%$'1(4!$9!'9!;-((-C9f!

+
,
-

.

.
#

17+$"'#+'4057!,

17+$"'#+.,-&.3'35,4&./
=

O

HE !
EWaH!

I%-1'1$($8)! -;! FR( $9! 804! 6'(74! -;! 46'(7'8$5,! -;! 804! 6'%$'1(4! $5! EWaH>! n-C464%! 80$9!

%4C'%+!6'%$'1(4!$9!5-8!'<87'(()!'9!9'#4!'9!'5'()8$<!+4;$5$8$-5!-;!$5+$<'8-%!-;!#R!178!$5!

:%'<8$<4! 804)! '%4! 97<0! <(-94! 80'8! <'5! 14! '997#4!-54>!G-C!#-+4(! <'5! 14! 9$#7('84+!
4'9$()! 1)! %4#-6$5,! D#8V3#+,! '<8$6$8)! '5+! 79$5,! NAFR! :%-1'1$($8)! ;-%! 1$'9$5,! 804!

498$#'8-%>! K497(8! -;! 80$9! 9$#7('8$-5! $9! 90-C5! $5! 8'1(4! E^H>! D0$9!#-+4(! $9! <-#:'%4+!

C$80!%497(89!-;!984'+)A98'84!9-(64%!-;!/k1$79!#-+4(($5,!8--(>!!
!
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g$,7%4!S>!"!F"G!#-+4(!C$80!8C-!%'%4!464589!
 

D'1(4!^>!?58$'(!#'%P$5,9!-;!F"G!#-+4(!-;!g$,7%4!S!

Place Names Initial Markings 
'35,(( N!
L&'5N(( O!
L&'5O(( O!

W#8V3#'+2( O!

!

D'1(4!]>!"<8$6$8)!-;!F"G!#-+4(!-;!g$,7%4!S!

Timed Activity  Distribution Parameters 

W#8V.,67,!"( Z=:-5458$'(!NOO!

W#8V3#+,( Z=:-5458$'(!NOOO!

L&'5N( Z=:-5458$'(!O>OOON!

L&'5O( Z=:-5458$'(!O>OOOON!

=,0&'.N( Z=:-5458$'(!N!

=,0&'.O( Z=:-5458$'(!NO!

!

D'1(4!a>!K497(89!-;!9$#7('8$-5!-;!F"G!#-+4(!%4:%49584+!-;!g$,7%4!S!

Method 1-P Time(s) Results Replications Confidence 

Interval 

Error 

G'M64!

9$#7('8$-5!

A! W^N]>^SO! ]>^R^]^]aW]NZAOT! NRWNOOOO! ]>^OVVS^^Sa]ZAO^! V>]Rs!

IJK! O>OaOaW]SS! ^]]>SV^! a>NSVNWSOO^OZAOT! NOOOOOOOO! W>OOTNWSNWRRZAO^! O>Was!

4.4 Example 4: POR vs. IS 

g-%!('98!4='#:(4!-;!:%494584+!#480-+@!C4!8498!80'8!-5!'!#-+4(!987+$4+!1)!J1'(!??!'5+!

F'5+4%9! Q!WTU! ;-%! ?F! 84<05$B74! :%49458$5,! $5!95".&:;<>! D0$9!#-+4(! <'5! 14! 9445! $5!
g$,7%4!T>!J1'(!??!987+)!804!75%4($'1$($8)!-;!80$9!#-+4(!-64%!'5!$584%6'(!-;!8$#4>!D0$9!

<'5!14!<-#:784+!80%-7,0!'5!'+!"&+"(#1("'4,(.,-&.3()&.'&85,!C045!804!9)984#!;'$(7%4!

#'%P$5,! $9!'5!'19-%1$5,!#'%P$5,!1)!4='#$5$5,!804! $598'58'54-79!%'84!%4C'%+!'8! 804!

45+!-;!$584%6'(!Q!WTU>!/-+4(!$9!'!4&$%'+,X.,0&'.4&+(!*!",4!80'8!7949!'!+4(')4+!,%-7:!
%4:'$%!:-($<)>!D04%4!'%4!8C-!8):49!-;!<-#:-54589!$5!804!9)984#@!C$80!+$;;4%458!;'$(7%4!

%'849>!D04!:('<49!('14(4+!8):4!N!'5+!8):4!W!#-+4(!804!8C-!8):49!-;!<-#:-54589>!D04!

#'%P$5,!-;!4'<0!:('<4!%4:%494589!804!57#14%!-;!C-%P$5,!<-#:-54589!-;!80'8!8):4>!?5!

80$9!<'94@!804%4!'%4!8C-!"*0,X#+,!<-#:-54589@!'5+!;-7%!"*0,X"-#!<-#:-54589>!D$#4+!

'<8$6$8$49! 1&'5VN!'5+! 1&'5VO!#-+4(! 804!8$#4!148C445!;'$(7%49!;-%!4'<0!<-#:-5458>!"9!

90-C5! $5! D'1(4! NN@! 804! ;'$(7%4! 8$#49! '%4! 4=:-5458$'(()! +$98%$1784+! C$80! #'%P$5,!
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+4:45+458! %'84! :'%'#484%9>! "! <-#:-5458! -;! 8):4A-54! ;'$(9! C$80! %'84! O>OOS@! C0$(4!

<-#:-54589! -;! 8):4A8C-! ;'$(! '8! 8C$<4! 80'8! %'84>! D04! 794! -;!#'%P$5,! +4:45+458! %'84!

:'%'#484%9!'((-C9!79!8-!'6-$+!$5<(7+$5,!'5!'<8$6$8)!;-%!4'<0!<-#:-5458b9!;'$(7%4!8$#4!

+$98%$178$-5@!%497(8$5,!$5!'!#-%4!<-#:'<8!%4:%49458'8$-5>!

!

g$,7%4!T>!D04!4&$%'+,X.,0&'.4&+!#-+4(!:%494584+!1)!J1'(!??!

!
D'1(4!NO>!?58$'(!#'%P$5,9!-;!F"G!#-+4(!-;!g$,7%4!T!

Place Names Initial Markings 

"*0,VN(( W!

"*0,VO( V!

1&'5,3VN( O!

1&'5,3VO( O!

!

D'1(4!NN>!"<8$6$8)!-;!F"G!#-+4(!-;!g$,7%4!T!

Timed Activity  Distribution Parameters 

1&'5VN( Z=:-5458$'(!O>OOS./'%PE"*0,VNH!

1&'5VO( Z=:-5458$'(!O>ON./'%PE"*0,VOH!

.,0&'.( Z=:-5458$'(!N!

!
D'1(4!NW>!"<8$6$8)!-;!F"G!#-+4(!-;!g$,7%4!T!

Gate  Enable Predicate Function 

0#5'$*( E8):4tNAu/'%PEH!u!O!pp!

8):4tWAu/'%PEH!u!OH!vv!!

E;'$(4+tNAu/'%PEH!hh!W!pp!

;'$(4+tWAu/'%PEH!u!NH!

!

$;!E;'$(4+tNAu/'%PEH!hh!WH!!

q!

! ;'$(4+tNAu/'%PEHhOm!

! 8):4tNAu/'%PEH!h!Wm!

o!

4(94!

q!

! ;'$(4+tWAu/'%PEH!h!Om!

! 8):4tWAu/'%PEH!h!Vm!

o!

D04!#'%P$5,9!-;!:('<49!1&'5,3VN!'5+!1&'5,3VO!%4:%49458!804!57#14%!-;!<-#:-54589!-;!
4'<0!8):4!80'8!0'64!;'$(4+>!D04%4!$9!-54!%4:'$%#'5!$5!804!9)984#>!D04!%4:'$%!:-($<)!$9!

8-!C'$8!758$(!'8!(4'98!8C-!<-#:-54589!-;!804!9'#4!8):4!0'64!;'$(4+@!'5+!8045!14,$5!8-!

%4:'$%!804!C0-(4!,%-7:>!D):4A-54!<-#:-5458!%4:'$%!$9!,$645!:%44#:8$64!:%$-%$8)!-64%!
%4:'$%!-;!8):4A8C-!<-#:-54589>!L045!804!%4:'$%!$9!<-#:(484+@!'((!<-#:-54589!-;!80'8!

8):4!'%4!'9!,--+!'9!54C>!D0$9!%4:'$%!:-($<)!$9!$#:(4#4584+!$5!804!$5:78!,'84!:-($<)>!

D04!:%-:4%8$49!-;!0#5'$*!'%4!90-C5!$5!8'1(4!NW>!"*0,VNAu/'%PEH!:-$589!8-!#'%P$5,!-;!
"*0,VN!'5+!9-!-5>!?;!'((!<-#:-54589!-;!1-80!8):49!;'$(@!804!9)984#!;'$(9@!'5+!'((!%4:'$%!

'<8$6$8)!0'(89m!804!;'$(4+!98'84!$9!'5!'19-%1$5,!98'84>!
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g-%!46'(7'8$-5!-;!75%4($'1$($8)!-;!#-+4(!'!%4C'%+!6'%$'1(4!$9!794+>!"!%4C'%+!98%7<87%4!

80'8!$+458$;)!804!;'$(4+!98'84!$9!

*+

*
,

-

.

.
+
,
-

#
17+$"'#+'4057!,

17+$"'#+.,-&.3
#"%,.-'!,

"*0,&+3"*0,'1

=

O

O

HO@WtEHO@NtEN
!

EROH!

_-'(! $9! <-#:78$5,! 804! 75%4($'1$($8)! $5! $584%6'(! QO@NOOU>! D0$9! <'5! 14! +-54! 1)! 79$5,!

%4C'%+!6'%$'1(4!'9!$598'58!-;!8$#4!%4C'%+!6'%$'1(4>!

g-%! 79$5,! 80$9! #-+4(! $5! IJK! #480-+@! C4! #798! 1%4'P! $8! $58-! 8C-! :'%89>! g-%! 80$9!

:7%:-94!C4!+4;$54!8C-!8):4!-;!%4:'$%f!.,0&'.V"*0,VN('5+!.,0&'.V"*0,VOK!Z'<0!%4:'$%!

8):4! 5-84! 8-! %4:'$%$5,! -;! -54! 8):4! 4>,>! .,0&'.V"*0,VN! $9! %4:'$%! '<8$6$8)! -5! 8):4! -54!

<-#:-54589>! "(9-! '9! +49<%$14+! 14;-%4! 804! 98'%8! 98'84! ;-%! +4;$5$5,! <)<(4! $9! 804! ('98!

#'%P$5,!<-##-5!148C445!8C-!:'%89>!D0$9!98'84!9$#:()!$9!qE1&'5,3VN@!WH@!E1&'5,3VOJ!VHo!

C045!9)984#!;'$(9!'5+!qE1&'5,3VN@!WHo!-%!qE1&'5,3VOJ!WHo!C045!.,0&'.!45'1(4+>!F-!9489!

!N@(!O('%4!'9!14(-C!

HoqE

H@>>>oW@W@WtEH@N@N@NtqE

W

N

!*!",41&'5

1&'51&'5"*0,.,0&'.1&'51&'5"*0,.,0&'.

#;

..#; !
ERNH!

!N!#4#14%9!'%4!80-94!C0-!%75!.,0&'.!'<8$6$8)!0-C464%!!W!0'9!-5()!-54!#4#14%!80'8!

$9! ;'$(! 98'84>! ?;! C4! <-58$574! 80$9! :'%8$8$-5$5,@! ;-%! <-#:78$5,! F! C4! #798! 46'(7'84!

;-((-C$5,!:%-1'1$($8)!C045!'!<-#:-5458!;'$(>!

HEHE

HE

HEHE

HE
N

WN

W

.,0&'.F!*!",41&'5F

!*!",41&'5F

FF

F
F

)
#

;);

;
#. !

ERWH!

D0$9!:%-1'1$($8)!$9!'!%'%4!46458!'5+!$9!9'#4!'9!;$5+$5,!75%4($'1$($8)>!F-!$5!80$9!#-+4(!

C4! 794! 9-#4! -804%!!( 9489>! D0494! 54C! 9489! 0-C464%! +-49! 5-8! <-#:(484! :790! %'%4!

464589!-5!-54!:'%8!'5+!-804%!464589!$5!-804%!:'%8@!04(:!9$#7('8$-5!$5!'!C')!8-!%4+7<4!

8$#4!'5+!6'%$'5<4>!G4C!9489!+4;$54+!'9!

@>>>HoWtEH@qE

@>>>HoNtqE

W

N

"*0,.,0&'.!*!",41&'5

"*0,.,0&'.

.#;

.#; !
ERRH!

D0$9! :'%8$8$-5$5,! 1%4'P9! 9)984#! $58-! -54! :'%8! 80'8! <-58'$5! %4:'$%$5,! -;! 8):4! -54!

<-#:-54589! '5+! '5-804%! :'%8! 0'9! ;'$(! 98'84! '5+! %4:'$%$5,! -;! 8):4! 8C-! <-#:-54589>!

G-C!NAF(+4;$54!'9!

HWtEHNtEHE

HWtEHE

HEHE

HE
N

WN

W

"*0,.,0&'.F"*0,.,0&'.F!*!",41&'5F

"*0,.,0&'.F!*!",41&'5F

FF

F
F

.).)
.)

#
;);

;
#. !

ERVH!

I%-1'1$($8)!ERWH!<'5!46'(7'84!9$#:()>!I'%8$8$-54+!#-+4(!0'9!5-!%4:'$%!'<8$6$8)!;-%!8):4!

-54!<-#:-54589>!D0$9! $5<%4'94! 804! ;%4B7458()!-;! 9)984#!;'$(!C0$(4! ENAFH!:%-1'1$($8)!

04(:! ;-%! 1$'9$5,! 804! 498$#'8-%>! D04! %497(8! -;! 80$9! 9$#7('8$-5! $9! 90-C5! $5! 8'1(4! NV>!

K497(89!-;!J1'(!??!9$#7('8$-5!'(9-!:%49458!$5!8'1(4!NR>!

!

D'1(4!NR>!K497(89!-;!9$#7('8$-5!-;!F"G!#-+4(!%4:%49584+!-;!g$,7%4!T!

Method Time(s) Results Replications Error 

G'M64!9$#7('8$-5! T^WRO! N>SWZAOT! W]R^SOOO! WO>]s!

?F! NR]S! N>aOZAOT! RR]Va^! N>OWs!

!

D'1(4!NV>!K497(89!-;!9$#7('8$-5!-;!F"G!#-+4(!%4:%49584+!-;!g$,7%4!T!

Method 1-P Time(s) Results Replications Error 

G'M64!

F$#7('8$-5!

A! NWaO>WOR! N>^N^TOSVSSaZAOT! ^aN]OOOO! NO>Ss!

IJK! O>NNV^W]R! ^R>WOR! N>aNaR^T]SaWZAOT! ]N]aOOO! O>ONs!

!
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*-80!9$#7('8$-5!E5'M64!'5+!:'%8$8$-54+H!%75!C$80!a]s!<-5;$+45<4!(464(>!K497(8!$5!-7%!

9$#7('8$-5! 90-C! '1-78! N^! 8$#49! $#:%-64#458! $5! 9$#7('8$-5! 8$#4! '5+! '1-78! NOSO!

8$#49!$5!%4('8$64!4%%-%!C0$(4!J1'(!??b9!%497(89!90-C9!V]!$5!;-%#4%!'5+!WO!8$#49!$5!('84%@!

%49:4<8$64()>!G-84!80'8!$5!80$9!#-+4(@!IJK!$9!5-8!794+!<-#:(484()!14<'794!-;!%4'<0$5,!

'5-804%! %'%4! 46458! C045! <-#:78$5,! 804! :%-1'1$($8)! FK! D04! :%-1(4#! -;! 79$5,! 804!

:%494584+!#480-+!;-%!80$9!#-+4(!$9!80'8!<-##-5!:'%8!148C445!!N@(!O!$9!5-8!9-!#7<0!

9-!<-#:78$5,(F! $9!544+!<-#:78$5,!-%$,$5'(!%'%4!46458>!n-C464%@!F$#7('8$-5!%497(89b!

90-C!,--+!$#:%-64#4589>!

5 Conclusions 

I'%8$8$-5!-;! 804!%4,$-5!1)!1%4'P$5,!804!%4,$-5!-;! 804!9$#7('8$-5!$58-! 8C-!:'%89!04(:9!

9$#7('8-%!8-!9:45+!#-%4!8$#4!-5!$#:-%8'58!:'%89!-;!804!#-+4(>!?5!80$9!:':4%@!79$5,!80$9!

84<05$B74!'!54C!'::%-'<0!;-%!;'98!9$#7('8$-5!-;!F"G!#-+4(9!$9!$58%-+7<4+>!g-%!80$9!

:7%:-94@!C4!0'64!+4;$54+!9489!!N!'5+!#W(80'5!1%4'P$5,!'!#-+4(!79$5,!"N('5+!"O!9489>!

D045@!804!:%-1'1$($8)!-;!14$5,!$5!804!$#:-%8'58!:'%8!80'8!$9!+4;$54+!1)!'!54C!$5+$<'8-%!

;75<8$-5!$9!<-#:784+>!"5+!;$5'(()@!804!#-+4(!$9!9$#7('84+!C$80-78!464589!$5!948!"O>!

F$5<4! :'%8$8$-5! -;! 804! %4,$-5! 7949! 9$#7('8$-5! $5! '! C')! 80'8! -5()! %'%4! 464589! '%4!

-194%64+@!$8!$#:%-649!4;;$<$45<)!-;!9$#7('8$-5>!"(9-!80$9!84<05$B74!<'5!9$#:()!+4;$54!
+)5'#$<'(()!9-!-54!<'5!45d-)!80$9!#480-+!'78-#'8$<'(()!-5!464%)!F"G!#-+4(>!!

L4!0'64!46'(7'84+!804!:%-:-94+!#480-+!79$5,!;-7%!4='#:(49!-;!F"G9>!K497(89!90-C!

80'8! 9$#7('8$-5! 8$#4! $9! +4<%4'94+! 4645! 7:! 8-! NOO! 8$#49@! C0$(4! 804! %497(89! -;! 804!

9$#7('8$-5!90-C!0$,0!$#:%-64#4589!%4,'%+$5,!804!%4('8$64!4%%-%9>!!

D04!#480-+!:%494584+! $5! 80$9!:':4%! $9!5-8!+4+$<'84+! 8-!F"G9!'5+!<'5! '(9-!14!794+!

C$80! -804%! 98-<0'98$<! 4=8459$-59! -;! I48%$! 5489@! 97<0! '9!FIG9@!_FIG9@! 48<>! ?8! $9! '(9-!

:-99$1(4!8-!794!80$9!#480-+!C$80!/'%P-6!<0'$59>!L4!'%4!<7%%458()!C-%P$5,!8-!794!804!

:%-:-94+!#480-+!;-%!%'%4!46458!9$#7('8$-5!-;!FIG9!'5+!/'%P-6!<0'$59>!!
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NS n4$+4(14%,4%@! I>@! jg'98! F$#7('8$-5! -;! K'%4! Z64589! $5! z747$5,! '5+! K4($'1$($8)!
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G7<(4'%!Z5,$544%$5,!'5+!Y49$,5!^^@!::>!VaATW>!

N] [bZ<7)4%@!I>@!*('5<048@!&>@!D7;;$5@!*>@!'5+!_()55@!I>!L>@!j"9)#:8-8$<!K-17985499!

-;!Z98$#'8-%9! $5!K'%4! 46458! F$#7('8$-5j@!"X/!D%'59'<8$-59! -5!/-+4(($5,! '5+!
X-#:784%!F$#7('8$-5@!WOO^>!

Na [bZ<7)4%@!I>@!Y4#4%9@!`>@!'5+!D7;;$5@!*>!jF:($88$5,!;-%!K'%4!46458!F$#7('8$-5@j!?5!

I%-<>!-;!804!WOOT!L$584%!F$#7('8$-5!X-5;4%45<4@!?ZZZ!I%499@!WOOT@!NR^ANV]>!

WO /4)4%@! &>g>!/-6',0'%@! ">! '5+! F'5+4%9@!L>n>@! jF8-<0'98$<! "<8$6$8)! ! G48C-%Pf!

F8%7<87%4@!*40'6$-%!'5+!"::($<'8$-5@j!?5!I%-<>!-;!?58b(!L-%P90-:!-5!D$#4+!I48%$!

G489@!D-%$5-@!?8'()@!&7()!Na]S@!::>!NOTANNS>!!!

WN G$<-('@!`>g>!G'P')'#'@!/>!w>!n4$+4(14%,4%@!I>!'5+!_-)'(@!">@!jg'98!F$#7('8$-5!

-;!Y4:45+'1$($8)!/-+4(9!C$80!_454%'(!g'$(7%4@!K4:'$%!'5+!/'$5845'5<4!I%-<499@j!

?5!I%-<>!-;!WO80!"557'(!?584%5'8$-5'(!F)#:-9$7#!-5!g'7(8AD-(4%'5<4!X-#:78$5,@!

G4C<'98(4!7:-5!8):4@!\5$84+!w$5,+-#!NaaO@!::>!VaNAVa]>!!

WW G$<-('@! `>g>! F0'0'17++$5@! I>! '5+! G'P')'#'@! />@! jD4<05$B749! ;-%! g'98!

F$#7('8$-5! -;! /-+4(9! -;! n$,0()! Y4:45+'1(4! F)984#9@j! ?5! I%-<>! -;! 804! ?ZZZ!

D%'59$8$-5!-5!K4($'1$($8)@!`-(>!SO@!G-!R@!WOON>!

WR G$<-('@!`>g>!F0'0'17++$5@!I>!n4$+4(14%,4%@!I>!'5+!I>L>!!_()55@!jg'98!9$#7('8$-5!

-;!F84'+)AF8'84!"6'$('1$($8)!$5!G-5A/'%P-6$'5!F)984#9@j!NaaR>!

WV J1'(! ??@!L>Y>! '5+! F'5+4%9@!L>n>@! j"5! Z56$%-5#458! ;-%! ?#:-%8'5<4! F'#:($5,!

*'94+!-5!F8-<0'98$<!"<8$6$8)!G48C-%P9@j!?5!I%-<44+$5,9!-;!804!NR80!F)#:-9$7#!

-5!K4($'1(4!Y$98%$1784+!F)984#9@!Y'5'!I-$58@!X"@!J<8>!NaaV@!!::!TVA^R>!

WS J1'(! ??@! L>! Y>! '5+! F'5+4%9@! L>! n>@! j?#:-%8'5<4! F'#:($5,! F$#7('8$-5! $5!

\(8%'F"Gj@!g%-#!F$#7('8$-5@!`-(>!TW@!G->!W@!g41>!NaaV@!::>!a]ANNN>!

121 A.J. Bidgoly and M.A. Azgomi

UKPEW 2008 – http://ukpew.org/



WT J1'(! ??@! L>Y>@! j?#:-%8'5<4! F'#:($5,! *'94+! -;! F"GA*'94+! K4C'%+! /-+4(9j!

/'984%!D049$9@!D04!\5$64%9$8)!-;!"%$2-5'@!&7()!NaaR>!

W^ K71$984$5@! K>! x>@! jF$#7('8$-5! '5+! /-584! X'%(-! /480-+@j! L$(4)! 94%$49! $5!

:%-1'1$($8)!'5+!#'804#'8$<'(!98'8$98$<9@!&-05!L$(4)!'5+!9-59@!G4C!x-%P@!\5$84+!

F8'84!-;!"#4%$<'@!Na]N@!::>!NNVANS]>!

W] F'5+4%9@!L>!n>@!'5+!/4)4%@!&>!g>@!j"!\5$;$4+!"::%-'<0!;-%!F:4<$;)$5,!/4'97%49!

-;! I4%;-%#'5<4@!Y4:45+'1$($8)@! '5+!I4%;-%#'1$($8)@j! $5!Y4:45+'1(4!X-#:78$5,!

;-%!X%$8$<'(!"::($<'8$-59@!Y4:45+'1(4!X-#:78$5,!!'5+!g'7(8AD-(4%'5<4!F)984#9@!

`-(>!V>@!">!"6$2$45$9!'5+!&>!X>![':%$4@!4+$8-%9@!F:%$5,4%!`4%(',@!`$455'@!NaaN@!::>!

WNSAWR]>!!

Wa F'5+4%9@! L>! n>@! /4)4%@! &>! g>@! jF8-<0'98$<! "<8$6$8)! G48C-%P9f! g-%#'(! Y4;$5$8$-59! '5+!
X-5<4:89@j![4<87%49!-5!g-%#'(!/480-+9!'5+!I4%;-%#'5<4!"5'()9$9@!WOON>!

RO F0'0'17++$5@!I>@!jF$#7('8$-5!'5+!"5'()9$9!-;!n$,0()!Y4:45+'1(4!F)984#9@j!I0Y!
D049$9@!F8'5;-%+!\5$64%9$8)@!NaaO>!

RN F0'0'17++$5>! I>@! j?#:-%8'5<4! F'#:($5,! ;-%! 804! F$#7('8$-5! -;! n$,0()! K4($'1(4!

/'%P-6$'5!F)984#9@j!#'5',4#458!F<$45<4@!6-(>!VN@!5->!R@!/'%<0!NaaV@!::>!RRRA
RSW>!

RW F0%4$+4%@!x7>!">@!jD04!/-584!X'%(-!/480-+!E804!/480-+!-;!F8'8$98$<'(!D%$'(9H@j!

I4%,'#-5@!Z(#9;-%+@!G4C!x-%P@!NaTT>!

RR D7;;$5@! *>@! j*-75+4+! 5-%#'(! '::%-=$#'8$-5! $5! 9$#7('8$-59! -;! 0$,0()! %4($'1(4!

/'%P-6$'5!9)984#9>j!&-7%5'(!-;!"::($4+!I%-1'1$($8)!RT@!V@!Naaa@!::>!a^Vya]T>!

RV D7;;$5@!*>@!jJ5!57#4%$<'(!:%-1(4#9!$5!9$#7('8$-59!-;!0$,0()!%4($'1(4!/'%P-6$'5!
9)984#9@j!?5!I%-<>!-;!804!N98!?584%5'8$-5'(!X-5;4%45<4!-5!z7'58$8'8$64!Z6'(7'8$-5!

-;! F)9D4#9! EzZFDH>! ?ZZZ! XF! I%499@! \5$64%9$8)! -;! DC4584@! Z59<04+4@! D04!

G4804%('5+9@!WOOV@!::>!NSTyNTV>!

RS `$((4{5A"(8'#$%'5-@! />@! '5+! `$((4{5A"(8'#$%'5-@! &>@! jKZFD"KDf! "!

F8%'$,08;-%C'%+!/480-+! ;-%!g'98!F$#7('8$-5!-;!K'%4!464589@j! ?5!I%-<44+$5,9!-;!

804!NaaV!L$584%!F$#7('8$-5!X-5;4%45<4@!NaaV@!::>!W]WAW]a>!

RT `$((4{5A"(8'#$%'5-@!/>@! '5+!`$((4{5A"(8'#$%'5-@! &>@! jKZFD"KDf!"!/480-+! ;-%!

"<<4(4%'8$5,! K'%4! Z6458! F$#7('8$-59@j! $5! &>! L>! X-045@! X>Y>! I'<P@! 4+$8-%9@!

z747$5,@! I4%;-%#'5<4! '5+! X-58%-(! $5! "D/@! NR80! ?584%5'8$-5'(! D4(48%';;$<!

X-5,%499@!X-:450',45@!G-%80An-(('5+@NaaN@!::>!^NA^T>!

R^ `$((4{5A"(8'#$%'5-! />! '5+! `$((4{5A"(8'#$%'5-@! &>! jJ5! 804! 4;;$<$45<)! -;!

KZFD"KD!;-%!#7(8$+$#459$-5'(!9)984#9>j!"X/!D%'59'<8$-59!-5!/-+4($5,!'5+!

X-#:784%!F$#7('8$-5!NT@!WOOT@!R@!WSNyW^a>!

R] L$(($'#9-5@! ">@! jY$9<%484! Z6458! F$#7('8$-5! $5! 804! /k1$79! /-+4(($5,!

g%'#4C-%P>j!/'984%|9!8049$9@!\5$64%9$8)!-;!?(($5-$9!'8!\%1'5'AX0'#:'$,5@!Naa]>!

!

Rare Event Simulation of Stochastic Activity Networks 122

UKPEW 2008 – http://ukpew.org/



From architecture to SWN models for

compositional performance analysis of

Component Based Systems: application

to CCM based systems

Nabila Salmi∗, Patrice Moreaux †and Malika Ioualalen ‡

Abstract

Predicting performance in early stages of software development is an
important issue, especially in the case of systems developed as an assem-
bly of components. The analysis of such Component based systems (CBS)
may be difficult or impossible to conduct, because of the combinatorial
state space explosion. To cope with this phenomenon, the paper pro-
poses an efficient compositional method for modelling and performance
analysis of CBS, applied to the CORBA Component Model (CCM). The
method starts from the definition of the architecture of the system and its
components, and applies a systematic translation into a structured inter-
connection of formal models (Stochastic Well formed Nets (SWN),a high
level model of Stochastic Petri Nets) associated to components and their
interactions. We then derive performance indices of the system through
an efficient analysis based on the structure previously built.

1 Introduction

The desire to bring better quality and higher efficiency in software design has
led to the development of Component Based Systems (CBS). These systems
are made of elementary bricks or components, assembled together [19]. This
approach has attracted both academic and industrial communities in many en-
gineering fields (embedded systems, web-based applications, etc). Several com-
ponent models have been defined for this purpose such as EJB, CCM (CORBA
Component Model), .NET, Fractal, PECOS, Koala. For most of these models,
an Architecture Description Language (ADL) [14] allows to describe an assem-
bly of components. From this description, a set of tools generate the application
code and perform some formal verifications such as type compatibilities. Com-
ponent based technologies provide rapid development and promise significant
benefits. However, when assembling components, software designers should have
some assurance that the resulting system meets the performance expected by
users and avoids contention and bottlenecks. Moreover, for large architectures
of CBS, such properties are more difficult to derive. So, it is advisable to have
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methods and tools that allow qualitative and quantitative analysis of CBS, to
support designers in their activities.

To achieve this goal, several work was proposed mainly for qualitative anal-
ysis. [1]uses model checking of Labeled Transition Systems (LTS) to prove tem-
poral logic properties of a Fractal CBS. [7] and [17], are respectively based on hi-
erarchical coloured Petri nets (HCPN) and generalized stochastic nets (GSPN).
In contrast, performance analysis is usually carried out with measures on ex-
isting systems using performance testing [9]. We can however note proposals
for predictive performance modelling [4]. This approach, followed by [21, 10],
translates architecture designs, mostly given in the UML language into adequate
performance models such as Layered Queuing Networks (LQN) [8], Stochas-
tic Petri Nets (SPN)and Stochastic Process Algebras (SPA).However, we claim
that UML is not sufficiently expressive to model complex systems, and that QN
don’t allow synchronization, resource contention and conflicts modelling, which
are important characteristics of actual systems.

In this perspective, we propose a structured compositional approach for per-
formance analysis of a CBS, trying as possible to reduce complexity of the
analysis. The main idea is to start from the architecture description of the CBS
expressed in an ADL, to model components, to derive the CBS global model, and
then to apply a structured compositional method to derive performance indices.
XXX Components are modelled with Stochastic Well-formed Net (SWN) [3], a
special class of Stochastic coloured Petri Nets, that we believe being the most
suitable formalism for performance analysis of complex symmetrical systems.
SWNs constitute a high level state based model, able to model complex systems
with concurrency and conflicts and enabling performance indices evaluation.
Moreover, they benefit from a large set of analysis algorithms and tools [13].

Our approach first translates systematically components interfaces and in-
teractions in the SWN context. Two main interaction patterns are defined
between components: synchronous request/response interactions provided with
the method invocation (such as an RPC or RMI communication) and asyn-
chronous interactions given through notification of events. We then show how
to build the global SWN of the CBS. Finally, we apply a structured method,
derived from our previous works [5, 6] and adapted to CBS, allowing to com-
pute performance indices in an efficient way. Computations are based on a
combined aggregation/tensorial representation of the underlying Markov chain
of the global SWN, which reduces the complexity of the analysis (time and
memory). In a previous paper [18], we have studied modelling and performance
evaluation of Julia implementation of FRACTAL based CBS, which provides
synchronous interactions between FRACTAL components. The present paper
extends this work to more general CBS with asynchronous event-based inter-
actions. We have chosen to illustrate our approach with the Corba Component
Model, CCM (CCM-CBS) [15]. CCM is indeed a language-neutral model, using
the two classical interaction modes : request/response and event-based.

This paper is organized as follows. Section 2 presents the main features of
the CCM model, illustrated by an example of application. We then give details
of our method in section 3 We illustrate in section 4, the application of the
approach to our example. We conclude and give future work in section 5.
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Figure 1: CCM component interfaces (left), CCM based application architecture
(middle) and the Avionics control system example (right)

2 The Corba Component Model

The CORBA Component Model (CCM) [15] is a component model independent
from operating systems and programming languages, designed to address the
limitations with earlier versions of CORBA 2.x middleware.
CCM features A CCM component is an implementation entity, described by a
set of attributes and a set of communication points termed ports or interfaces in
the sequel. Attributes are named values exposed through accessor and mutator
operations, primarily intended to be used for component configuration. Inter-
faces (figure 1, left) are access points of four types: facets and receptacles sup-
porting a synchronous-style interaction and event sources and sinks providing
asynchronous event-based communication. Facets accept point-to-point invo-
cations from other components; receptacles indicate a dependency on point-to-
point method interface of another component; event sources emit asynchronous
messages (events) of a specified type to one or more interested components, and
event sinks receive from sources events of a specified type. CCM support for
events follows the publish/subscribe event push model [15], compatible with the
CORBA notification service: Sinks, said subscribers, register (subscribe) for a
class of events published by a source (publisher). Intermediate event channels
are used to broker event messages between publishers and subscribers. A chan-
nel manages a specified type of event. It receives an event notification from one
publisher and acknowledges it. Then, it sends the notification to all interested
subscribers. At reception of an event, a subscriber acknowledges it and runs an
event handler for processing the event.

A CCM component is located inside a container which provides it with the
runtime environment and allows it to access a set of system and middleware
services such as persistence, transaction, security and event services (figure 1,
middle). A container also offers non-functional services related to lifecycle (e.g.
create, delete, etc.), bindings and invocations. A CCM application is built by
defining an assembly entity using XML Schema templates.
Illustration: An avionics control application We exemplify our approach
with a typical industrial avionics control application (figure 1, right) presented
in [20]. In this application, a Rate Generator component sends periodic pulse
events to a positioning sensor (GPS) component. This GPS refreshes cached
coordinates available through a facet named MyLocation, and notifies a Display-
ing device with Ready events. This component reads current coordinates via its
receptacle GPSLocation, and then updates the display.
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3 Modelling and analysis of CCM-CBS

In order to allow qualitative and performance analysis of CBSs, we developed a
general method, based on the Stochastic Well-formed Model (SWN), and con-
centrating on performance properties. An SWN [3] is a special class of coloured
Petri net, a Well-formed (WN), with probabilistic extensions. The structured
definition of an SWN allows us to compact its reachability graph in a Symbolic
Graph, SRG, composed of symbolic markings Moreover, the SRG provides an
aggregate version of the underlying Markov chain of the SWN. To analyze a
CBS, our method consists of two main phases: Generation of a global SWN of
the CBS, called G-SWN, starting from the CBS description architecture and
component implementations. Then, a structured analysis of the G-SWN is ap-
plied. The G-SWN of a CCM CBS is built by modelling first components and
their interfaces with an SWN model termed a Component SWN or C-SWN. C-
SWNs are then modified to be composable with others, in the sense of Petri net
composition (fusion of places or transitions), leading to Composable Component
SWNs (CC-SWNs). Finally, the interacting CC-SWNs are composed together
through fusion of element interfaces, providing the G-SWN.

3.1 From CCM-CBS to SWN models

When modelling CCM based applications, we considered the following points:
(i) We study “stable” (i.e. fixed) architectures of CCM-CBS and we do not
address performance of reconfiguration behaviours, as performance indices are
mainly computed over long periods (steady-state analysis). Hence, we do not
model non-functional services pertaining to initialization and reconfiguration
steps.
(ii) We model explicitly the event channel, characterized in CCM, with only one
publisher of a specific event type and several subscribers.
(iii) We model container services not related to architecture modification, be-
cause lifecycle and binding services relate to transient configurations.
(iv) We use basic colour classes to model data entities (requests and parameters,
request or event data,...) and active entities (processes, threads).
In the sequel, before presenting component modelling, we describe the mod-
elling of event interfaces. Details on facet/receptacle modelling can be found in
our previous work [18] which defined mapping rules (1, 2 and 3) for translating
requestor (receptacle) and service (facet) interfaces into the SWN context.

3.1.1 Event-based interfaces

Modelling event interfaces requires knowledge of the event handler implementa-
tion and of the resuming point after processing of event. An event handler may
be implemented inside the subscriber(s) as an internal operation. It may also
trigger a service request to another component which can be the publisher itself.
This strategy, known as control-push data-pull mode, is commonly encountered
when a data producer, being the publisher, publishes an event indicating that
some data was updated and is ready to be consumed. To retrieve the data,
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Figure 2: SWN models of event publisher interface (left), event channel (middle)
and subscriber (right)

the subscriber calls an accessor method in a facet provided by the component
storing the data. On the other hand, after an event processing, the subscriber
may resume the suspended activity, or jump to another processing mode.
Because of space constraints, we present in the sequel the modelling of two cases:
(i) the case of subscriber internal event processing and activity resuming, and
(ii) the control-push data-pull case also with resuming activity.
The other cases can be deduced following a quite similar modelling.
Mapping rule 4: Event interfaces, case (i)(1)
• A publisher interface of a component, identified by a set PTh of colours mod-
elling possible publisher threads, is modelled with a transition TNE representing
the notification of events (see figure 2, left), with Pthreads, Ack_channel places
as preconditions, and ReleasTh, SentEvents as postconditions.
• An event channel managing a set E of events of a specified type is modelled
with two transitions TRE and TSE, expressing respectively receiving events
from publishers and sending these events to subscribers (figure 2, middle). The
TRE transition is controlled by Rec_Events and SoE places and has the CAck
and GenerEvents places as postconditions. While the TSE transition is con-
trolled by GenerEvents and Ack_subscrib places and has as postconditions the
SoE and SE_channel places.
• The SWN of a subscriber interface of a component, identified by a set STh
of colours modelling possible subscriber threads (see figure 2, right for an ex-
ample), is made of two parts: (i) a local processing modelled by the BeginTask
and EndTask transitions, controlled by two places ReceivEvents and SThreads
places, and (ii) an event processing part triggered with the TTrigger transition
modelling reception of an event. TTrigger is also controlled by ReceivEvents and
SThreads and has SAck and EToProcess as postconditions. The event handler
is modelled with the TEHandler transition.

In the publisher model, places Pthreads and Ack_channel model respectively
the publisher threads and the ready state of the component. Whereas, places
ReleasTh and SentEvents model respectively the publisher threads resuming
their activities and event notifications. The Ack_channel and SentEvents places
are uncoloured as we model publishers notifying one specific type of events.

In the event channel model, the Rec_Events and SoE places model respec-
tively received notifications and the set of possible events. Rec_Events is not
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coloured. Postconditions of TE (CAck and GenerEvents) model respectively
acknowledgment and generated events to be sent to subscribers. CAck is also
not coloured, and GenerEvents has the same domain as SoE. The Ack_subscrib
place models the “ready to broadcast events” state of the channel. It is also un-
coloured as the Ack_channel of the publisher. The SE_channel place models
events sent to subscribers by the channel.

In the subscriber model, when an event is received in place ReceivEvents,
the local processing is interrupted thanks to inhibitor arcs which prevent firings
of transitions BeginTask and EndTask (and possibly others expressing other
local activities). The SThreads place is coloured with the STh basic class,
while ReceivEvents has the same domain as the SoE place (neutral or set of
event colours when dealing with several types of events). The reception of
event causes the sending of an acknowledgment in the uncoloured place via
the firing of the transition TTrigger (or TTrigger1), SAck and execution of
an event handler. Note that we abstracted the model of event processing into
one transition TEHandler (or TEHandler1 ). We can replace this transition
with a subnet detailing the handler when we are interested in the impact of
processing details on performances of the system. Globally, the triggering of the
handler shall be achieved in a “short” period of time, with respect to components
activities. This may be reflected in firing rates ratios (for instance 0.001/1.0)
of TTrigger, TTrigger1 transitions, over BeginTask, EndTask and TEHandler,
TEHandler1 transitions.
Dealing with multiple subscribers A publisher interface can push events
to several subscribers. In this case, the C-SWN of the event channel must
be modified (see mapping rule 5) in order to be composable at the same time
with several publishers and subscribers models (fusion of places or transitions).
This modification gives rise to a CC-SWN modelling the event channel. Note
that CC-SWNs corresponding to publishers and subscribers components are the
obtained C-SWNs without any modification. Moreover, in the figure, we model
for clarity only one transition (Task1 ) for the local processing of the subscriber.
Mapping rule 5: Event interfaces, case (i)(2) The C-SWN of an event
channel with multiple subscribers is modified by duplicating places SE_channel,
Ack_subscribe and their arcs, as many times as there are subscribers.
Control-push data-pull mode In this case, the publisher is endowed with a
facet and an event source, and the subscriber with a receptacle and an event
sink. Mapping rule 7 gives the corresponding modelling. For ease of modelling,
we abstract the local processing of the subscriber component to one transition.
Mapping rule 6: Event interfaces case(ii) The SWN of figure 3 models the
control-push data-pull case. The event channel remains unchanged, as defined
in mapping rule 4. The publisher, identified with a set PTh of colours mod-
elling publisher threads, sends events through the TNE transition. It exposes
a facet interface using a set MP of business methods parameterized with a set
of parameters, and modelling the service providing data related to the event.
The subscriber, identified with a set STh of subscriber threads, receives event
notifications in the Received Events place, and triggers a service request through
a receptacle (given by the transitions TBRS and TERS ) to obtain event data.

In this modelling, the subscriber performs a local processing until receiving
a notification of an event (in place Received Events). In this case, it sends an
acknowledgment for this event through the transition TTrigger, and invokes a
business method (transition TBRS ) to the publisher component.
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Figure 3: CC-SWNs of event interfaces in control-push data-pull mode

3.1.2 Building CC-SWNs for CCM components

Starting from each component implementation, the C-SWN of a component is
built by analyzing the source code of the component, fixing a level of details for
modelling and following the algorithm below:

CC-SWN BUILDING ALGORITHM
1. Translate each facet defined with the "provides" keyword using

mapping rules 1 and 3. Model activities related to the service.
2. Translate each receptacle defined with the "uses" keyword using

mapping rules 1 and 2.
3. Translate each event source defined with the "publishes" or "emits"

keyword using mapping rules 4 or 6 and 5 eventually.
4. Translate each event sink defined with the "consumes" keyword using

mapping rules 4, 6 and 5 eventually. Model activities related to
the event handler.

5. If any processing involved in any interface invokes internal methods
of the component, model activities associated with these functions.

End

Modelling activities in any stage is done by an expert. Obviously, abstraction
may be used at this stage by selecting an appropriate level of details of com-
ponents. At the highest abstraction level, an activity is modelled with a single
transition. When we obtain the model, we associate rates to transition, as we use
stochastic models. These rates may be estimated through a model parameters
estimation phase, where a test application (see for instance the Grinder tool,
http://grinder.sourceforge.net) is ran in order to measure the parameters
needed for performance prediction.

Let us illustrate the building of the CC-SWN of a CCM component with
the NavDisplay component of the avionics control system. We start from the
implementation code given below:

eventtype tick {public rateHz rate};interface position {long get_pos()};
interface tickConsumer:Components:: EventConsumerBase

{ void push_tick(in tick the_tick);};
interface NavDisplay : Components:: CCMObject

129 N. Salmi, P. Moreaux and M. Ioualalen

UKPEW 2008 – http://ukpew.org/



receivReady

NE
Nav_Threads

ST2M0

P17

ST2

P29

ST2

Local
ST2

SentAcks
NE

P46
ST2

EndHandler

ERS

BRS

EndNav_LocalNav_Local

refresh_reading

push_refresh

<n> <s2>

<s2><n>

<s2>

<s2>

<s2>

<s2>

<n>

<s2>

<s2> <s2>

<s2>

<s2>

<s2>

receivReady

NE
Nav_Threads

ST2M0

P17

ST2

PendingReq

E,ST2

P29

ST2

Local
ST2

SentAcks
NE

P46
ST2

EndHandler

ERS

BRS

EndNav_LocalNav_Local

refresh_reading

push_refresh

<n> <s2>

<s2><n>

<s2>

<s2>

<s2>

<s2>

<n>

<s2>

<s2> <s2>

<s2>

<e,s2>

<s2>

<s2>

<e,s2>

Figure 4: The NavDisplay C-SWN and CC-SWN

{ void connect_GPSLocation(in position c);
position disconnect_GPSLocation();tickConsumer get_consumer_Refresh();
position get_connection_GPSLocation(); };

component NavDisplay {uses position GPSLocation;consumes tick Refresh;};
class NavDisplay_Executor_Impl: public virtual CCM_NavDisplay,
public virtual CORBA:: LocalObject
{ public: virtual void push_Refresh(tick *ev) {this->refresh_reading();}

virtual void refresh_reading(void)
{ position_var cur = this->context_->get_connection_GPS Location();
long coord = cur->get_pos(); }; };

From the definition of the component interfaces, we derive first a model
of the receptacle GPSLocation, with the BRS and ERS transitions. ST2 is
the basic colour class modelling the NavDisplay threads. We also model the
event sink to which an event handler refresh_reading is associated, triggered
by the GPS through the push_refresh operation. We model the handler with
several transitions: a beginning transition refresh_reading, a couple of receptacle
transitions BRS, ERS modelling the request to the GPS facet, and ending
transition EndHandler. We obtain the C-SWN of figure 4, top. This C-SWN is
completed using mapping rule 2, getting thus the CC-SWN of figure 4, bottom.
We model the other components in the same way. Communication between the
GPS and NavDisplay components is a control-push data pull scenario. Event
channels are also modelled between the RateGen and GPS components, and the
GPS and NavDisplay components as described in mapping rule 5.

3.1.3 Containers

A container is made up of a set of interconnected CCM components and a set of
services offered to its components. It mediates invocations of components from
or to external components belonging to other containers, through: (i) either a
callback (external) interface which acts as an interceptor for all incoming calls to
the component, (ii) or an interceptor for outgoing calls, internal to the container.
So, building the SWN of the container requires connecting its components CC-
SWNs, modelling the services and modelling the mediation role.
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Figure 5: Modelling routing of a container service request (left), the container
service (middle) and callback interfaces (right)

Connecting the components CC-SWNs Interconnection of the CC-SWNs
is translated into the fusion of transition/places corresponding to interfaces of
communicating components. Precisely, we proceed to:
- Fusion of transitions (TBRS,TBPS) and (TERS,TEPS) associated with facet/
receptacles of each couple of interacting components.
- Fusion of places (SentEvents, Rec_Events) and (Ack_channel, CAck) asso-
ciated to event interfaces of each publisher and its event channel, and places
(SE_channel,ReceivEvents) and (Ack_subscriber, SAck) associated to event
interfaces of each subscriber and the corresponding event channel.
Fusion of two transitions (resp. places) consists in defining a unique transition
(resp. place) and keeping associated arcs of fused transitions (resp. places).
Colour classes of the two transitions are mapped in one to one correspondence
for common parameters of the interface and specific colour classes of each transi-
tion (resp. place) are kept. Hence, the colour domain of the resulting transition
is the Cartesian product of colour classes of the fused transitions without rep-
etition. Whereas, colour classes of two fused places are mapped in one to one
correspondence leading to the colour domain of the fused place.
Modelling container services Achieving this modelling requires to asso-
ciate a CC-SWN model to each container service and a second SWN mod-
elling the routing of a component request to the service needed. We assume a
monothreaded container. Mapping rule 7 describes this concern.
Mapping rule 7: Container services
• A container service is modelled with an abstracted component having one
service interface, identified by a set of server threads colours and offering a set
MP of methods (figure 5, middle). One transition Execute abstracts the service.
• Routing a request to an invoked container service is modelled with the model
of figure 5, left. A single place ContainerThread models the unique thread of the
container. The InterceptCallServ transition expresses intercepting a request. It
is controlled by the ContainerThread place. The TBRSIntern transition models
the request made by the container to its service. The result is obtained with the
TERSIntern transition and sent to the requester using EndCallServ transition.

We choose to abstract the activity induced by a container service, as our goal
is to consider the impact of a service on the execution of the analyzed CBS. On
another side, the container can manage its component instances, threads or
resources using pooling technique to reduce some overhead. If the designer is
interested in knowing the impact of this pooling on performances of his appli-
cation, we can consider this by associating a consequent rate to the transition
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TBRSIntern related to the invoked operation. Note that, for more clarity, the
SWNs given in figure 5 are not coloured, but should be.
Modelling the mediation role Outgoing component calls are mediated by the
container. This is modelled, as in the case of a container service invocation, using
mapping rule 7. External invocations to components services located inside a
container are also intercepted by this container on an external interface, and
routed to the concerned component. This is modelled with mapping rule 8.
Mapping rule 8: Callback interfaces
Routing an external invocation to a component service of a container is mod-
elled with the model of figure 5, right. The InterceptExt transition models the
interception of a request. It is controlled by the ContainerThread place. The
TBRSCallExt transition represents the submission of a request to the concerned
component. The result is obtained with the TERSCallExt transition and sent
to the requester using EndCallExt transition.
CC-SWN of a container modelling a container leads to a CC-SWN whose
interfaces are defined as the callback interfaces and non-connected interfaces
associated with internal invocation of external services.

CONTAINER CC-SWN BUILDING ALGORITHM
1. Model each container service using mapping rule 7.
2. Connect communicating CCM components.
3. For each invocation of a container service, build a mediation

part using mapping rule 7, connect it to the requested component
in the left side, and to the service model in the right side.

4. Model each callback interface using mapping rule 8, and connect
it to the requested component service.

5. For each internal invocation of a service offered by an external
component, build a mediation part following mapping rule 7,
and connect it to the requester component.

End

3.1.4 Modelling the CCM application

Modelling a CCM application requires interconnection of its containers CC-
SWNs. This is done via connection of their interfaces, as done for CCM compo-
nents. The resulting CC-SWN is then completed, as usual, by “closing” inter-
faces of the application with a simple Petri net to provide a G-SWN with finite
state space.

For our application, the three components are included in one container
Their CC-SWNs are interconnected. We then close the rate_control interface
of the application (initially of the RateGen component), which provides the
start and stop methods.

3.2 Structured performance analysis of CBS

After generating the G-SWN of a CCM-CBS and the (CCSWNk)k∈K of the
components, we apply the last step of our analysis approach, aiming mainly
at computing performance indices of a system. We can also check qualitative
properties like deadlocks or reachability of a particular state (i.e. a marking).
Analysis of a CCM-CBS can be performed through the direct analysis of the G-
SWN obtained in the first step of our method. This approach has been followed
in [2] for analysis of a composition of SWNs, and implemented in the Algebra
tool of the GreatSPN package [16]. In our approach, we rather benefit from the
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Transition Rate Transition Rate Transition Rate
NewTick 0.5 push_ready 0.75 return_location 0.9
push_pulse 0.8 push_refresh 0.8 BPS 8
push_tick 0.8 GPS_Local 0.4 Nav_Local 0.4

Table 1: Transition rates of the studied configuration

compositionality of a CBS in order to provide an efficient steady-state perfor-
mance analysis with regard to computation time and memory requirements.

For this purpose, we devise an extension of our previous work [5, 6] adapted
to CBS, and applied here to analysis of CCM-CBS. Let us remind that our
previous approach defines a structured analysis method which decomposes a
(global) SWN into several subnets connected in either a synchronous or else an
asynchronous manner, and study each subnet augmented with “parts” abstract-
ing interactions with other subnets. These separated studies are used to derive
a tensorial representation of the generator of the underlying aggregated Markov
chain of the global net, used to compute performance indices.

3.2.1 Structured analysis method for CBS, applied to CCM-CBS

Extension to CBS of our structured analysis rises three problems:
1. Composition of CC-SWNs of components, as we start from the definition

of components in the case of a CBS. This is in contrast to the previous method
where a global SWN is decomposed into several subnets. Composition of SWNs
models of a CBS has been explained above.

2. Bringing an interconnection of components into a synchronous or an asyn-
chronous composition of SWNs. We map a request/response interaction into a
synchronous composition of CC-SWNs, while we model an event interaction
with an asynchronous composition of CC-SWNs. We emphasize here that our
modelling of interfaces ensures that conditions of synchronous and asynchronous
compositions of subnets given in [12, 11] are fulfilled.

3. Impact of having mixed synchronous and asynchronous compositions in
the same global model, as the structured method was defined for either a syn-
chronous composition or else asynchronous composition of SWNs. This problem
requires the following sufficient conditions for applying our method:
(i) If (N1,N2) and (N1,N3) (resp. (N2,N3)) are in pairwise client/server rela-
tionship, then (N2,N3) (resp. (N1,N3)) are not in client/server relationship.
(ii) If (N1,N2) are in publish/subscribe relationship and in client/server rela-
tionship too, then event colours are not involved in the client/server interaction.
(iii) If (N1,N2) and (N1,N3) are in publish/subscribe relationship, and if (N2,N3)
are in client/server relationship, then event colours are not involved in the
(N2,N3) interaction.

We give next our analysis algorithm based on the structured method. We
start with the G-SWN of the application and the set of CC-SWNs correspond-
ing to components E={CC-SWNk | 1 ≤ k ≤ K}.
1. Find the set of SWN subnets (Nk)1≤k≤K′ representing a possible decompo-
sition of the G-SWN, that fulfill conditions stated in [12, 11] for a structured
representation of the SRG and its aggregated generator. These SWNs do not
necessarily correspond to the CC-SWNs of the set E due to restricted conditions
above. This point is investigated by checking first service invocation interac-
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Figure 6: GPS processing request response time (left) and NavDisplay event
handling response time (right) with respect to component receiving rate

tions, and then event interactions.
2. Extension of the SWNs Nk to autonomous (said extended) SWNs N̄k.
3. Generation of the SRGs of these extended SWNs.
4. Computation of the synchronized product of these SRGs and of the tensorial
representation of the generator of the underlying aggregated Markov chain.
5. Computation of the steady state distribution of the aggregated model and
computation of the required performance indices.
6. Expression of the results in the initial context of the components.

Automation of points 1 and 6 are currently under development, whereas the
the others steps have been automated in a tool compSWN, the new version of
the TenSWN tool [5].

4 Illustration

The set of (CC-SWNk) obtained when modeling components satisfy conditions
for a structured analysis. We use our tool compSWN on this set to compute
steady-state probabilities. The solver runs on a Suse linux 9.2 workstation with
Intel Pentium IV (3GHz) and 512 MO.

We are interested in studying the variation of two performance indices: (i)
the response time of processing a request in the GPS, with regard to its no-
tification receiving rate (push_tick rate), and (ii) the response time of the
event handling in the NavDisplay, with respect to its notification receiving rate
(push_refresh rate). We choose a configuration of the CBS leading to an SRG
size of 281760 symbolic markings (3937280 ordinary markings). We take fixed
rate values of a critical set of transitions (see table 1); then, we vary transition
rates (not mentioned transitions have rate equal to 1, i.e. faster than all others,
rates being given in the same unit). We obtain diagrams of figure 6.

The left diagram shows an improved response time as the receiving rate of
the transition push_tick increases. This is somewhat surprising, as the response
time gets reduced when the GPS gets overloaded. This a priori contradictory
behaviour indicates that the system is not stable in the initialization phase,
but adapts its activity to events arrival. The right diagram for two different
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request processing rates in the GPS (return_location transition) shows a very
slightly increasing response time with increasing of event receiving rate in the
NavDisplay. The increasing of response time is expected since the load of the two
components (NavDisplay and GPS which processes the event request) becomes
more important. However, we note the very slow increasing of the response
time, which shows a good configuration not saturated for a long period of time.

5 Conclusion

In this paper, we have proposed a method allowing us to study, in an efficient
way, performances of Component Based Systems designed with the CORBA
Component Model. The approach starts from the architecture description of a
CCM based application and the code of its components. It provides an SWN
(the G-SWN) of the whole system and a collection of SWNs corresponding to
the components or the containers of the application. A structured composi-
tional analysis method is used to compute performance indices. If, SWNs of
the components are complex, this approach provides memory and time savings.
Current work relates to automatizing information extraction for direct CCM
interface. Future work will try to extend application conditions for structured
analysis and semi-automatic verification of these conditions.
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Mapping WSLA on Reward Constructs
in Möbius

Rouaa Yassin Kassab∗ Aad van Moorsel†

Abstract

This paper provides an outline for generating Möbius reward con-
structs and a partial Stochastic Activity Network model from an existing
Web Service Level Agreement (WSLA) document of a web service sys-
tem. This is done by parsing the WSLA document to group its ‘Service
Level Agreement parameter elements’ with their corresponding ‘metric el-
ements’ using the Document Object Model parser. These groups then are
represented by matching Stochastic Activity Network representations and
reward C++ statements that can be integrated in the Möbius framework.
Using this approach, service providers can predict SLA values by solving
the produced model.

1 Introduction

The rapidly increasing popularity of the service provider paradigm raises the
necessity to define clear relationships between service providers and their po-
tential customers regarding the offered Quality of Service (QoS) (like response
time, availability, etc) [1, 2]. Service Level Agreements (SLA) set the rules of
this relationship and specify additional information such as the penalties that
should be paid in case of the contract breaching [3].

To specify the different service levels, specification languages such as Web
Service Level Agreement language (WSLA) [4] have been developed. WSLA is
based on XML [5] and is used to describe SLA parameters of a web service and
the way to compute their values [6]. If SLAs are not met, the provider typically
pays a penalty [7]. Therefore, it is of interest to model and predict if systems
meet SLAs.

We are not aware of any special modelling tool that provides a model for a
system given its SLA. Therefore in this paper, we develop a way to create this
model from a given WSLA document using the Möbius framework components
[8]. This is done by using the Document Object Model parser (XML DOM)
[9] to examine the WSLA document and group each SLA parameter with the
elements that compute its value. It is worth mentioning that we have found
that it is not possible to map SLA elements to the Möbius reward constructs
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only. This is caused by dependence between WSLA elements and the inability
to store a set of the reward values generated over an interval of time. Therefore,
we represent each element in the parameter group with either a set of Stochastic
Activity Network (SAN) primitives or a set of C++ statements of the Möbius
reward model function, or a combination of these two.

This paper is organized as follows. In Section 2, we provide the background of
the WSLA language and the Möbius modelling tool. The problem we address
is then described in Section 3. A solution is proposed and discussed using a
running example in Section 4. Finally, the conclusion is drawn and future work
is pointed out.

2 Background

2.1 WSLA Language

The primary role of the WSLA language is to formalize service level agreements
in order to automate the configuration of the service provision system and the
QoS monitoring system [4]. To achieve this, the WSLA specification contains
three important constructs:

• Parties: describes the players that are involved in the SLA contract.

• Service Definition: contains a comprehensive definition of SLA parameters
and how to use metrics to compute their values. Each metric will be
measured from a source by identifying a measurement directive. In the
case of a composite metric, its value will be accumulated using a function
(that takes other metrics or constants as its operands). We are particularly
interested in this part because it contains the SLA parameter descriptions.

• Obligations: includes Service Level Objectives which are the agreed values
of SLA parameters in a specified duration, and what action should be
taken in the case of contract violation.

WSLA language rules are designed to be thin. However, to cover the com-
plexity of real systems, WSLA allows one to create new types which express
domain specific SLA concepts [4]. In this paper, we limit our attention to the
WSLA core, which provide the most important requirements for the system
providers, and its standard extensions functions and measurement directives.
We do not consider constructs that could be extended according to the domain
specific needs (like using different measurement directives and functions depend-
ing on Web Service Definition Language defined operation) [4]. Furthermore, in
the WSLA Metric definition, we depend on measurement directive and functions
to compute the metric values. We ignore both the measurement directive vari-
able element and the MetricURI element which define the location from which
metric value can be taken directly.

2.2 Möbius

The Möbius tool is used in modelling the performance of a wide range of comput-
ing systems [8]. It is a framework that comprises multiple modelling formalisms
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Figure 1: Problem Description

(SAN, Bucket and Balls, PEPA, Fault tree) and multiple solution methods (sim-
ulation, numerical solvers), and many of its methods are independent and can be
used in combination with each other [8]. To measure the performance attributes
of a given system using Möbius, we should [8]:

• Build an atomic model that depicts all the relevant system states (using
tokens in the simple or extended places). State changes occur by actions
(timed or instantaneous activities) which fire according to a distribution
rate (deterministic, exponential, etc). Input/Output Gates can also be
defined to represent the enabling predicate of an activity or the marking
change of a place.

• Create the composite model if necessary (when the atomic model is a part
of a larger model).

• Define the rewards from which metrics will be computed. There are two
kinds of rewards; rate rewards represent the time spent in each state
(place) and impulse rewards count activity completions. Each reward
variable has a reward function that computes its value, and time type
that specifies when the reward function should be evaluated.

• Solve the model by using either simulation or numerical solvers.

3 Problem Description

In Figure 1, we graphically depict the problem we tackle. It indicates a web
service with an SLA specified by a Web Service Level Agreement document.
Independently, this web service is modelled using Stochastic Activity Networks
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in the Möbius framework. Rewards are defined on this model using the reward
structures in Möbius.

Let us assume that we only have the WSLA document for a given service.
The objective of our work is to automatically generate a complete reward def-
inition in Möbius and the part of the SAN model (places and activities) that
will be needed to accomplish the reward description. Black arrows in Figure 1
indicate the problem we address.

<Schedule name="hourlyschedule">
<Period>

<Start>2001-11-30T14:00:00.000-05:00</Start>
<End>2001-12-31T14:00:00.000-05:00</End>

</Period>
<Interval>

<Minutes>60</Minutes>
</Interval>

</Schedule>

<SLAParameter name="TransactionRate" type="float" unit="transactions/hour">
<Metric>Transactions</Metric>
<Communication>

<Source>ACMEProvider</Source>
<Pull>ZAuditing</Pull>
<Push>ZAuditing</Push>

</Communication>
</SLAParameter>

<Metric name="Transactions" type="long" unit="transactions">
<Source>ACMEProvider</Source>
<Function xsi:type="Minus" resultType="double">

<Operand>
<Function xsi:type="TSSelect" resultType="long">

<Operand>
<Metric>SumTransactionTimeSeries</Metric>

</Operand>
<Element>0</Element>

</Function>
</Operand>
<Operand>

<Function xsi:type="TSSelect" resultType="long">
<Operand>

<Metric>SumTransactionTimeSeries</Metric>
</Operand>
<Element>-1</Element>

</Function>
</Operand>

</Function>
</Metric>
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<Metric name="SumTransactionTimeSeries" type="TS" unit="transactions">
<Source>ACMEProvider</Source>
<Function xsi:type="TSConstructor" resultType="TS">

<Schedule>hourlyschedule</Schedule>
<Metric>SumTransactions</Metric>
<Window>2</Window>

</Function>
</Metric>

<Metric name="SumTransactions" type="long" unit="tansactions">
<Source>ACMEProvider</Source>
<MeasurementDirective xsi:type="InvocationCount" resultType="long"/>

</Metric>

Table 1: WSLA Example.

It is important to note that it is not possible to model SLA parameters into
Möbius just using rewards. We therefore also map WSLA partly on a SAN,
essentially to model additional reward constructs. This is for two reasons:

1. Möbius does not accept to use the value of a reward variable (that is gen-
erated by solving the model) as an input to another reward variable in
the same model [8]. This means that reward variables in the same model
in Möbius cannot depend on each other. However, in WSLA, the value of
SLA parameter depends on the value of a metric that may depend on an-
other metric and so on. To work around this, we use a SAN model, which
represents a part of the required metric, to be used in the computation of
SLA parameters.

2. There is no ability to store a set of reward values during a period of time
in Möbius. However, in the computation of most SLAs, WSLA depends
on a set of metric values that is taken through a defined period of time or
series of events. Therefore, we use extended places in SAN, allowing us to
store values according to the firing of an activity.

In WSLA, as we mentioned before, an SLA parameter depend on metrics
to compute its value [4]. These metrics could be either resource metrics, which
use a measurement directive to measure its value, or composite metrics, which
depend on the value of other resource metrics through a specified function [4].
Therefore, we first provide the mapping for resource metrics.

Every SLA should at least depend on a metric that uses the measurement
directive. That is because if SLA parameter depends on only one metric, it
should be a resource metric. To illustrate this further, see the example in Table
1, which was taken from the IBM WSLA language specification [4]. It specifies
an SLA which reflects the rate of an operation invocation. The value of this
SLA is derived by computing the difference between the last two measures of
the invocation values which are taken on an hourly basis.

This example computes the value of the SLA parameter TransactionRate
depending on the use of the resource metric SumTransactions, and the com-
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posite metrics SumTransactionTimeSeries and Transactions. The value of
the metric SumTransactions should be produced first by using the measure-
ment directive InvocationCount. The result then will be input to the function
TSConstructor to compute the value of the SumTransactionTimeSeries met-
ric. After that, the last two values of the previous metric will be derived by the
use of two copies of the function TSSelect in the third metric Transactions.
Finally, these values are used as the operands of the function Minus in the same
metric to produce its final value. This will be used then to generate the value
of the SLA parameter.

4 Solution

The following steps establish the mapping from WSLA on Möbius rewards:

1. We start by grouping each SLA parameter that appears in the WSLA
document with the metrics that compute its value.

2. For each group, we work from the metric that contains the measurement
directive element up to the SLA parameter element (passing through met-
rics that use function elements to compute their values).

3. After mapping each SLA element, metric element and function element
to its corresponding representation in Möbius, we will represent this in a
new XML based document that can be input into Möbius.

We implemented the first step in the above approach using the Document
Object Model parser (XML DOM). The third step is beyond the scope of this
paper and is future work. Here we will focus only on the second step because
it is the most sophisticated phase in mapping from WSLA to Möbius. For
that we try to find and explain the representations for WSLA function and
measurements directive elements through the running example of Table 1 in
Section 4.1 and 4.2. Because of space limitations, we are not able to provide
the solution for all the WSLA elements.

4.1 Measurement Directive

A measurement Directive element is used when the value of a Metric should be
measured directly from a resource by probing or instrumentation of the system
[8]. There are seven types of measurement directives in the WSLA specification.
We represent each of them through one or more places in the Möbius Atomic
model editor. This place then will be used as the basis to build the functions
on.

Referring to Table 1 with the WSLA example, we see that the value of the
SLA parameter InvocationRate is computed using three Metrics SumTransact
ions, SumTransactionTimeSeries and Transactions. The first one will take
the reading of the current operation’s invocation value to be stored by the sec-
ond metric in an hourly schedule. The last metric then will subtract the last two
values to obtain the transaction rate. Note that there is only one measurement
directive InvocationCount and it is used by the last metric SumTransitions.
We map this in Möbius as depicted in Figure 2, using the following SAN prim-
itives:
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Figure 2: The representation of InvocationCount element in Möbius

• InvocationCount simple place: stores the number of operation invoca-
tions in the modelled system as the number of tokens in this place.

• Timed Activity1: connects to the place to increase its marking according
to an invocation rate.

• Input gate1: controls the enabling of the activity and limits its firing
times to not go to infinity. This is necessary in order to be able to solve
the model.

By the use of this representation, we could have continuous readings of the
value of the operation invocations. Thus, we could substitute the work of the
SumTransition metric in WSLA example.

4.2 Functions

Function elements are used for a Metric if the Metric value is derived from the
value of other metrics or constants [8]. There are eighteen types of functions
used in WSLA document. Some of them will be mapped to the Möbius Atomic
model editor, while the others are mapped to the reward function.

4.2.1 Functions that are mapped to the Atomic model editor

In WSLA, there are two functions (TSConstructor and QConstructor) which
will be mapped to SAN primitives. Those functions are used to store a number
of values, which are taken from another metric or function through a specific
period of time, to be used by other metrics. Recalling the example again,
and moving to the next metric, we see that the value of the SumTransition
metric is used by the composite metric SumTransitionTimeSeries which use
the TSConstructor function. This function will be mapped as follows (See
Figure 3):

• SumTransactionTimeSeries extended place: It stores an array of values
that are taken from the metric that is specified in the Metric element in
the TSConstructor function (the SumTransaction metric that is repre-
sented by the InvocationCount place in our example). The number of

143 R.Y. Kassab and A. van Moorsel

UKPEW 2008 – http://ukpew.org/



Figure 3: The representation of TSConstructor in Möbius

Figure 4: The produced atomic model

elements in the array is equal to 2, which is the value of the <window>
element in the TSConstructor function.

• SumTransaction activity: The role of this activity is to specify the times
that a new value will be added to the SumTransactionTimeSeries ex-
tended place. This is done by using a deterministic firing rate equal to the
value that was given in the Interval element of the Schedule element in
the TSConstructor function (60 minutes in our example).

• Output Gate1: This is used to store each incoming value from the SumTrans
actions Metric in the corresponding array element in the SumTransaction
TimeSeries extended place. The index of the array will start from 0 to its
maximum value (array size minus one), returning the index to zero when
the number of values reaches the array index maximum value.

Here, we could store a series of a particular size for the readings copies that
was taken from the SumTransition metric according to a predefined schedule of
time. So, we could replace the use of the SumTransactionTimeSeries metric.

After joining the previous two graphs that appear in Figure 2 and Figure 3,
we will have the graph that is depicted in Figure 4.

By using this SAN graph, we could obtain the value of the number of the
operation invocations according to an hourly schedule, and retain the last two.
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Place Name InvocationCount SumTransaction-
TimeSeries

Initial Markings 0 0

Timed Activity SumTransaction Timed Activity1
Distribution Parameters Value:60 Rate:1

Activation Predicate (none) (none)
Reactivation Predicate (none) (none)

Input Gate Input Gate1
Predicate InvocationCount -> Mark() < 100
Function ;

Output Gate Output Gate1

Function

if (I < 1) { I =I+1; //where I is a global variable
SumTransactionTimeSeries->Index(I)->Mark()=

InvocationCount->Mark();
} else { I=0;

SumTransactionTimeSeries->Index(I)->Mark()=
InvocationCount->Mark(); }

Performance Variable Model: Invo reward

Top Level Model Information
Child Model Name example

Model Type SAN Model

Performance Variable : TransactionRate
Affecting example
Models

(Reward is over all Available Models)
Reward return((example->SumTransactionTimeSeries->Index(1)->Mark())
Function - (example->SumTransactionTimeSeries->Index(0)->Mark()));

Type Steady State

Options

Estimate Mean
Include Lower Bound on Interval Estimate
Include Upper Bound on Interval Estimate

Simulator Estimate out of Range Probabilities
Statistics Confidence Level is Relative

Parameters
Initial Transient 0.0
Batch Size 1.0

Confidence
Confidence Level 0.95
Confidence Interval 0.1

Table 2: The produced Möbius reward functions.

4.2.2 Functions that are mapped to the reward function coding

The remaining functions will be represented in the reward function in Möbius
reward model. Since C++ is used to write the code for different Möbius com-
ponents (functions, etc.) [8], all the functions’ representation will be encoded
in C++ as well.

As Möbius reward model has a time type through which its function will be
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computed, the <Interval> element of the <schedule> element for each of
the WSLA functions (of this type) will be mapped into this time type.

In our example, the last thing to do is to subtract the last two values that
are stored in the SumTransactionTimeSeries metric.

We see that the composite metric Transactions uses the function Minus,
which has two operands. These operands are the last two values of SumTrans
actionTimeSeries metric (represented in the SumTransactionTimeSeries ex-
tended place) that was taken through the use of the TSSelect function. The
TSSelect function will be used as a part of the reward function in order to be
able to choose the element with a certain index that is specified in the <element>
element in the TSSelect function. The Minus function will also be included in
the reward function to compute the subtraction between the two values.

Return ((SumTransactionTimeSeries->Index(1)->Mark ()) -
(SumTransactionTimeSeries->Index(0)->Mark ()));

A Return statement is used here identical to the Möbius reward encoding.
If we put the previous representation in the Möbius tool, Table 2 states the

parameter values and the coding for each primitive and for the reward function.

5 Conclusion

This paper provided a mapping of SLA parameter elements in WSLA on Möbius
reward and atomic models. It focused mainly on finding a representation in
Möbius for WSLA function and measurement directive elements. In future
work we implement this in Möbius. We are also developing generalisations of
this approach to map WSLA to other reward structures than those used in
Möbius.
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Using Representative Intervals for
Trace-Based Performance Analysis of

Embedded Device Use Cases

Lukas Pustina∗ Simon Schwarzer† Peter Martini‡

Abstract

Especially, in the development of embedded devices like mobile phones,
performance evaluation plays an important role. The processing power is
limited due to space, heat, and power restrictions of these devices. There-
fore, design alternatives and different architecture configurations have to
be analysed as early as possible in the development cycle. A typical
approach for the analysis of different architectures is the simulation of in-
struction traces of use cases captured on already existing platforms. The
drawback of this approach is that for different inputs, new traces have
to be generated which require real input data and capturing time. Our
approach analyses the input sensitivity of typical embedded device use
cases in a prerequisite step. For use cases with a low input sensitivity it
is possible to store representative intervals of selected program executions
in a database. These representative intervals in combination with rules
which describe the influence of input parameters are used to predict the
performance of future architectures. The approach is evaluated for GSM
and JPEG algorithms for which the frame rate and the number of pixels
are used as input parameters. Thus, developers have to provide the rel-
evant input data parameters only and the runtime of the simulations is
reduced.

1 Introduction

New application areas for embedded devices like multimedia phones and short
product cycles of these devices make performance evaluation of new hardware
platforms necessary already in early stages of development. In these develop-
ment phases, hardware prototypes are not yet available. Thus, it is a common
practise to use detailed processor simulations to analyse the performance of
different platform architectures.

The performance evaluation of future platforms for embedded devices is
use case driven and is not dominated by wide range benchmarks, because the
application areas of the devices are known and limited in comparison to desktop
computers. Typical use cases for modern multimedia phones are the compression
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or decompression of JPEG pictures and encoding and decoding of GSM voice
data on the multipurpose CPU instead of a specialised chip.

Nevertheless, simulations of these use cases are very time consuming, because
all performance relevant aspects of the platform have to be considered and
millions of instructions have to be simulated. A series of approaches to reduce
the simulation time of processor simulations are presented in the literature.
However, all approaches focus on the acceleration of given combinations of use
case and input data.

This paper presents a method that utilises ideas of the acceleration ap-
proaches to identify the influence of input data on given use cases. Characteris-
tics of the program executions are used to identify phases in the use cases. By
analysing the changes in the occurrence of the phases, the influence of the input
data is identified. This knowledge is than applied to predict the performance
for general input data. This is done by projecting the simulation results of rep-
resentative samples depending on given input data parameters of the use case.
In this way, the method eases the analysis of new use case configurations and
accelerates the evaluation of different architecture configurations. Developers
have to provide relevant input data parameters only and do not need to provide
real input data. The number of pixels of an image or the frame rate of an audio
stream are examples for such input parameters.

The rest of the paper is structured as follows. Section 2 gives an overview
of related work. Section 3 introduces our method and describes the analysis
steps in more detail. An evaluation of the approach is presented in section 4.
Section 5 concludes the paper and outlines future work.

2 Related Work

There are two types of approaches for the simulation of performance mod-
els of processors and platforms, i.e. execution-driven and trace-driven [JE06].
Execution-driven simulations process compiled programs as input and simulate
their execution on the modelled platform. Simplescalar [ALE02] is an exam-
ple for this type of processor simulation. Trace-driven simulations focus only
on timing-relevant aspects of the model and do not simulate the functionality.
A stream of instructions captured during a former execution is used as input.
Both approaches have pros and cons which are discussed in detail in [JE06]. The
main drawback of the execution-driven approach is the necessity to port oper-
ating systems and drivers to the simulator environment. In contrast, the main
advantage of the trace-driven approach is that no operating systems and drivers
have to be ported, so that every program available as instruction trace may be
simulated. On the other hand, a drawback of this approach is the missing possi-
bility to simulate the consequences of branch predictions, because the necessary
information is usually not included in the instruction traces. Since the miss-
ing branch prediction consideration has typically no significant influence on the
accuracy of the simulation results [YEL+06], this drawback is negligible. Pro-
cessor emulators like Qemu [Bel07] emulate the functionality of a processor in
software, but do not take into account the timing of instructions or components
of the architecture. This kind of programs may be used to capture instruction
traces instead of special hardware is necessary to capture instruction traces at
the processor level.
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We use trace-driven simulations to predict the performance of embedded
device architectures for given program executions already during early develop-
ment stages when the system is not fully specified. Instruction traces gathered
on existing platforms are used as input for the platform configurations under
study to predict their performance. This approach is feasible because successor
architectures usually remain backward compatible.

Since ARM processors are widely deployed in embedded devices like mobile
phones, instruction traces captured at processors of the ARM family are used
in the analysis. Models of these platforms include the performance relevant
components and aspects, i.e. pipeline behaviour of instructions, caches, buses,
memory system, and the interconnections of these components. Details of the
used trace-driven simulator and the modelling of ARM9 and ARM11 platforms
with UML have been presented in [PSM08].

The standard approach of platform performance evaluation for a given use
case consists of two essential steps. First, the input data for the use case is
specified. For example, in case of JPEG, the resolution of the pictures and the
sample pictures itself are specified. Second, the performance of a platform for
the specified use case is analysed by simulating the instruction trace on a model
of the platform. Approaches that reduce the simulation time base on two basic
ideas. First, the reduction of the total number of necessary simulations for the
use case while preserving the accuracy. Second, the reduction of the runtime of
single simulations.

Approaches for both ideas are presented in the literature [EVB03, SPHC02,
SPC01, DCD03, WWFH03]. Reducing the number of necessary simulations is
achieved by analysing characteristics of program executions for different inputs.
By grouping executions depending on their architecture-independent character-
istics, it is possible to simulate only one representative of each group. Eeckhout
et al. examined the influence of different inputs on programs of the SPEC2000
benchmark [EVB03]. With the help of architecture-independent characteris-
tics and cluster analysis inputs with similar executions are identified. Similar
methods can be applied to intervals of a single program execution. In this way,
it is possible to identify representative intervals for the whole execution of a
particular program [SPHC02, SPC01, DCD03, WWFH03].

3 Methodology Description

All mentioned approaches focus on the acceleration of simulations with a fix
combination of use case and input data. Therefore, the input data need to be
provided by the developers. For example, if developers want to analyse the
runtime of the compression of a picture with different resolutions, they have to
provide a real picture files.

In contrast, our approach predicts the runtime of use cases on the basis of
relevant parameters of the input only. Methods presented in the literature are
applied to identify the start, end, and parameter dependent phases of program
executions. By analysing the length of the parameter dependent phase for dif-
ferent inputs, it is possible to derive rules describing the influence of significant
input parameters. These rules can be used to project the execution time for dif-
ferent use case inputs by only simulating representative samples of the traces.
In the area of embedded device development the uses cases of interest are known
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from the beginning or may be combined from existing use cases. For example,
a videoconference application may be composed of the already existing audio
phone call use case and the photo capturing and photo displaying use cases.

Figure 1: Overview of the main method steps and the final use case analysis.

In the following, the main features of the approach are described. Figure 1
shows an overview of the method. It can be divided into two parts. In the
prerequisite steps a database is filled with representative intervals of program
traces. In the final performance evaluation part performed by the developers
in their daily work, the intervals stored in the database are used to predict the
performance of different architectures with the help of trace-driven simulations.
In the input sensitivity analysis step of the first part, architecture-independent
characteristics of program executions for different input files are determined.
Among other characteristics the instruction mix (e.g. arithmetic, logical, or
memory instructions) as well as register access and usage characteristics like
the register definitions and register used characteristics are calculated. The reg-
ister definitions characteristics count how often a register was written and the
register used characteristics state how often a register was used as an operand.
These characteristics have been proposed and successfully applied in literature
[LSC04]. The advantage of architecture-independent characteristics is that the
influence of the executing architecture is reduced. In this way, the results can
be transferred to other architectures, too. The result of this characteristics
determination is a characteristics vector for each program-input pair. The di-
mension of these vectors is the number of calculated characteristics. Following
the approach of [EVB03] a principal component analysis (PCA) is applied on
the characteristics vectors. Since the characteristics vectors have more than 30
dimensions the principal component analysis is applied to visualise and inter-
pret the data. The principal component analysis determines so called principal
variables which are linear combinations of the original characteristic variables
and eliminates the correlation between them. The dimensions of the character-
istics vectors are reduced to the number of principal variables which cover an
appropriate amount of the variance of the original characteristics variables. This
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drastically reduces the dimensions of the vectors and enables the visualisation
of the vectors in the PCA space. The visualisation of the characteristics vectors
for the program-input pairs in the PCA space show the level of input sensitivity
of the use cases. If the characteristics vectors for different inputs are similar
and therefore close together, the input sensitivity of the use case is low. If the
characteristics vectors differ and therefore scattered, the input sensitivity of the
use case is high. In the latter case, representatives for each input class have to
be selected. The input sensitivity of a use case can be mathematically repre-
sented by calculating the distance of each characteristics vector to the average
characteristics vector of the use case.

The selected representatives of the input classes are the input for the second
step in the prerequisite part, i.e. the phase detection step. In this step, char-
acteristics of intervals of single program executions are analysed with the same
techniques as in the input sensitivity step. The traces are split into intervals
of instructions. An appropriate length of the intervals is gained by varying the
number of instructions in the intervals until a clustering of the interval charac-
teristics vectors is found. The analysis of the function call graph of the trace
and the number of needed instructions of the functions provide a starting point
for the interval length selection. For each interval the characteristics vector is
calculated. Afterwards a principal component analysis is applied on these inter-
val characteristics vectors. A cluster analysis of these vectors helps to identify
the parameter dependent phases of the use case. The phases are weighted de-
pending on the number of included intervals. In this way, it is possible to track
the influence of changes in the input data e.g. the influence of smaller images
or more audio frames. From these observations it is possible to derive rules that
describe the influence of changes in the input data. For example, it may be
observed that the weights of the parameter dependent phase for different audio
inputs from the same input class depend linearly on the number of frames in the
audio files. Representative trace intervals for the parameter dependent phases
are stored in a database together with the rules that describe the influence of
the parameters. These rules are used in the performance evaluation part of the
method to predict the runtime or other performance metrics by just simulating
the selected representative intervals of the phases and applying the projection
rules. In this way, the developers do not need to provide real input data for
the analysis of a use case, if they want to examine different inputs. Instead,
they are enabled to state the important input data parameters only, e.g. image
resolution or number of audio frames.

4 Evaluation

The suggested input sensitivity analysis is presented for four use cases, i.e.
JPEG compression, JPEG decompression, GSM encoding, and GSM decoding.
These use cases are the basic parts of a video conference application. The
representative interval selection and the projection of performance metrics is
exemplary shown for GSM encoding and JPEG compression. All analysed pro-
grams are part of the MiBench suite [GRE+01] which provides typical programs
for different application areas of embedded and mobile devices. The JPEG algo-
rithms are part of the consumer category of MiBench and the GSM algorithms
are part of the telecommunication category. In case of the JPEG algorithms,
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the analysed inputs are taken from the MiDataSet collection [FCOT07] which
provides sets of input data for most of the MiBench programs. The parameters
of the input images vary in several settings. Beneath the content and the size
other parameter settings are varied, e.g. bits per pixel and the compression
algorithm (progressive, baseline). In case of the GSM algorithms, no input data
is provided by the MiDataSet collection therefore, we used audio samples from
a spoken radio play. Beneath the content of the audio data and the number of
audio frames, the number of audio channels is varied.

In the input sensitivity analysis step, architecture-independent characteris-
tics are measured for a set of inputs for the use cases. Afterwards a principal
component analysis is applied which reduces the dimensions of the characteris-
tics vectors. Figure 2 shows the characteristics vectors for the four programs and
several inputs in the PCA space. It can be seen that the use cases have different
characteristics and input sensitivities. The characteristics vectors of the GSM
encoding executions form two groups. The inner group input sensitivity is very
low, because the characteristics vectors of each group are close together. The
same observations hold for the GSM decoding algorithm. The characteristics of
the executions of the JPEG decompression algorithm varies depending on the
input data. The input sensitivity of the JPEG compression algorithm is lower
than the input sensitivity of the decompression, but is higher than the inner
group input sensitivity of the GSM algorithms.

Figure 2: JPEG compression, JPEG decompression, and GSM encoding and
decoding characteristics for several inputs.

In the phase detection step of the method, instruction intervals of repre-
sentative program executions for each identified input class of an algorithm are
analysed. In the following, the GSM encoding and the JPEG compression use
cases are used to exemplary show the existence of different input classes and
the evaluation of the phase detection and the performance predictions.
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4.1 GSM Encoding Use Case

This section shows the steps of the phase detection analysis for the GSM encod-
ing use case and presents results of the projection using representative intervals
compared to full simulations of the traces. Figure 3 presents a dendrogram of
all analysed inputs for the GSM encoding use case. The x-axis states the differ-
ent input files and the y-axis gives the distance between the detected clusters.
The connections between the inputs represent the clustering for the iterative
steps of the cluster algorithm. It can be seen that two input classes exist in the
analysed audio files. The input parameter which leads to the differences in the
characteristics is the number of audio channels. All inputs of the left cluster
have two audio channels, whereas the input files of the right cluster have only
one channel. By the calculation of the distances to the mean characteristics
vector of the cluster for inputs with only one audio channel, one representative
execution for the input class is selected.

Figure 3: Dendrogram for the GSM encoding with different inputs.

For each instruction interval of the selected program execution, characteris-
tics vectors are calculated and a principal component analysis is applied. In this
way, intervals with similar characteristics are grouped close together in the PCA
space. The length of the intervals is varied until an appropriate partition of the
interval characteristics vectors is found. Thus, interval lengths which result in a
strong clustering of the characteristics vectors have to be found. Figure 4 shows
the interval characteristics vectors in the PCA space with an interval length of
200,000 instructions. It can be seen that there are no obvious groups of inter-
vals. In contrast figure 5(a) shows the interval characteristics vectors with a
length of 150,000 instructions for the same trace. For this interval length the
characteristics vectors show a strong aggregation.

Figures 5(a) and 5(b) show the PCA space for two different input files of
GSM. It can be seen that the interval characteristics grouping is very similar
for both executions. The start and end phases have different characteristics and
are clearly outside of the main phase. It can be observed that the number of
intervals in the parameter dependent phase depends linearly on the number of
frames in the input file. A representative interval is selected and stored in the
database together with a rule describing the linear dependency on the number
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Figure 4: Interval characteristics vectors for an interval length of 200,000 in-
structions in the PCA space.

of frames. These information can now be used in the performance evaluation
part of the method to predict performance metrics while just simulating repre-
sentative intervals of the parameter dependent phase.

(a) GSM input 1 (b) GSM input 2

Figure 5: Interval characteristics vectors for an interval length of 150,000 in-
structions in the PCA space.

In the following, the error of the projection compared to simulated runtimes
of the original traces are analysed for three different architecture configurations.
Since ARM processors are widely deployed in mobile phones, different ARM9
architectures are used for the analysis. For example, the OMAP5912 board
contains an ARM9 processor with a clock frequency of 192 MHz and an in-
struction cache of 16 kB as well as an 8 kB data cache. This configuration
and two architectures with modified cache sizes are analysed. The represen-
tative sample of the parameter dependent phase is used for the prediction of
the runtimes of other GSM inputs with different content and number of frames.
By using the observed linear dependency on the number of frames and just
simulating the representative interval from the parameter dependent phase, the
runtimes are predicted with a mean relative error of less than 5% for all three
architecture configurations. Table 1 presents the mean relative errors and the
standard deviation for the analysis. By using the projection the number of
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instructions to simulate is reduced to the length of the intervals and an appro-
priate amount of instructions to pre-fill the caches. Methods for the selection of
an appropriate number of instructions to warm-up the caches are presented in
the literature, e.g. [ELBJ05, WWFH03]. This results in a significant speedup of
the performance evaluation, because the original GSM traces consist of millions
of instructions. The simulation of the original traces last hours whereas the
simulation and the projection of the representative intervals can be performed
in seconds. Moreover, it is possible to predict the runtime on different archi-
tectures by just simulating the representative intervals and without the need to
provide real input data. In case of the GSM example, the developers only has
to set the number of frames of the input data.

instruction cache data cache mean rel. error std.
16 kB 8 kB 3.82% 0.95%
16 kB 16 kB 4.04% 0.97%
8 kB 8 kB 1.10% 0.94%

Table 1: GSM encoding: mean relative errors and standard deviations of the
projection using one representative interval compared to full simulations.

4.2 JPEG compression use case

The input sensitivity of the JPEG compression algorithm is not as low as for the
inner class GSM encoding (cf. figure 2). Figure 6 shows a dendrogram of JPEG
compressions for different input pictures. The diagram shows the existence of
different input classes. In contrast to the GSM encoding use case, it is not possi-
ble to identify one single input parameter which classifies the input classes. The
amount of bits per pixel and the type of compression algorithm (progressive or
baseline) are candidates for a classification, but have to be analysed separately.
The following analysis will focus on the large group of inputs on the right side
of the dendrogram, i.e. input 0 - input 14. Nevertheless, predictions of the
runtime of other input classes with a representative from the largest group are
presented.

Figure 6: Dendrogram for the JPEG compression with different input pictures.
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The characteristics vector of input 13 is the closest vector to the mean char-
acteristics vector of the selected cluster. Therefore, input 13 is selected as
representative execution and the interval characteristics vectors of this trace are
analysed in the following phase detection step.

The number of instructions in an interval are again varied until an appro-
priate partition of the interval characteristics vectors is found. Interval lengths
of 100.000 and 150.000 result in a clustering of the characteristics vectors. Fig-
ure 7(a) presents the interval characteristics vectors in the PCA space for the
representative execution of the JPEG compression algorithm with an interval
length of 150.000 instructions. It can be seen that there are two groups of char-
acteristics vectors. Figure 7(b) shows the characteristics vectors in the PCA
space for a trace of an input image with more pixels. The number of charac-
teristics vectors in the two clusters increase linearly, so that a representative
interval of the larger group is stored in the database together with a rule of the
linear dependency on the number of pixels.

(a) Input figure with 344 x 337 pixels. (b) Input figure with 847 x 1167 pixels.

Figure 7: Interval characteristics vectors in the PCA space for two JPEG com-
pressions.

In the following, the error of the projections compared to simulated runtimes
for the JPEG compression use case is analysed. The projection of the runtime
is not only compared with simulation results of the selected input class but
also with simulation results of other input classes (cf. figure 6). The simulated
and projected runtimes are analysed for three different configurations of an
ARM9 processor (cf. section 4.1). Table 2 presents the mean relative errors
and the standard deviations for these analyses. The runtime of executions for
inputs of the same class compared to simulations of the corresponding trace are
predicted with a mean relative error of less than 6% for all three architecture
configurations. In case of runtime predictions for inputs from all input classes
the mean relative error increases but is still less than 12%. Figures 7(a) and 7(b)
show the existence of two parameter dependent clusters for an interval length
of 150,000 instructions. By the selection of a representative interval per cluster
and an appropriate weighting the prediction error may be decreased.

The input sensitivity analysis, the phase detection, and the performance
evaluation steps have been evaluated for different algorithms and architecture
configurations. The input sensitivity of four algorithms, i.e. JPEG compres-
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cache same input class all inputs
instr. data mean rel. error std. mean rel. error std.
16 kB 8 kB 3.76% 2.48% 10.94% 8.36%
16 kB 16 kB 5.81% 3.47% 7.69% 3.96%
8 kB 8 kB 4.22% 2.99% 11.78% 8.83%

Table 2: Mean relative errors and standard deviations of the projection.

sion and decompression and GSM encoding and decoding, have been presented.
JPEG compression and GSM encoding have been used to show the existence
of different input classes of the use cases and to evaluate the phase detection
step. Runtime predictions for three architectures with the help of selected rep-
resentative instruction intervals have been compared to simulation results of the
original traces.

5 Conclusion

The paper presented a method that eases and accelerates the performance anal-
ysis of embedded device use cases. Developers of embedded devices are enabled
to analyse the performance of different architectures for use cases by just set-
ting relevant input parameters. The presented approach base on the selection
of representative samples of captured instruction traces of the use cases. This
drastically reduces the amount of needed simulation time, so that the developers
are enabled to perform extensive architecture explorations.

The method consists of an input sensitivity analysis which base on charac-
teristics vectors of program executions. Principal component analyses are used
to reduce the number of dimensions of the vectors to visualise executions with
similar characteristics. The distances between the characteristics vectors show
how strong the characteristics of the executions depend on the content of the
input data. For use cases with a low input sensitivity, the same techniques are
applied to intervals of a single program run to find representative phases and to
determine the influence of changes in the input data. This knowledge is used to
predict the performance without the need to provide real input data.

Future work will focus on the evaluation of more algorithms from the MiBench
suite e.g. MP3 decoding and algorithms from the security category of MiBench.
The choice of an appropriate size of the intervals for the analysis of single pro-
gram runs will be automatised. Support of more than one representative interval
for programs with more than one parameter dependent cluster is also an inter-
esting topic.

References

[ALE02] T. Austin, E. Larson, and D. Ernst. Simplescalar: An infrastruc-
ture for computer system modeling. Computer, 35(2):59–67, 2002.

[Bel07] F. Bellard. Qemu homepage. http://fabrice.bellard.free.fr/qemu/,
2007.

Using Representative Intervals for Trace-Based Performance Analysis 158

UKPEW 2008 – http://ukpew.org/



[DCD03] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing
and predicting program behavior and its variability. Proceedings
of the 12th International Conference on Parallel Architectures and
Compilation Techniques, 2003.

[ELBJ05] L. Eeckhout, Y. Luo, K. De Bosschere, and L. John. Blrl: Accurate
and efficient warmup for sampled processor simulation. Comput.
J., 48(4):451–459, 2005.

[EVB03] L. Eeckhout, H. Vandierendonck, and K. De Bosschere. Quanti-
fying the impact of input data sets on program behavior and its
applications. Journal of Instruction-Level Parallelism, 5:1–33, 2
2003.

[FCOT07] G. Fursin, J. Cavazos, M. O’Boyle, and O. Temam. Midatasets:
Creating the conditions for a more realistic evaluation of iterative
optimization. In International Conference on High Performance
Embedded Architectures & Compilers, January 2007.

[GRE+01] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown. Mibench: A free, commercially representative embed-
ded benchmark suite. In WWC ’01: Proceedings of the Workload
Characterization 2001, pages 3–14, Washington, DC, USA, 2001.
IEEE Computer Society.

[JE06] L. John and L. Eeckhout. Performance Evaluation and Bench-
marking. CRC Press, Taylor and Francis Group, 2006.

[LSC04] J. Lau, S. Schoemackers, and B. Calder. Structures for phase classi-
fication. In Proceedings of the 2004 IEEE International Symposium
on Performance Analysis of Systems and Software, pages 57–67,
Washington, DC, USA, 2004. IEEE Computer Society.

[PSM08] L. Pustina, S. Schwarzer, and P. Martini. A methodology for per-
formance predictions of future arm systems modelled in uml. In
Proceedings of the 2nd Annual IEEE International Systems Con-
ference Syscon 2008, 2008.

[SPC01] T. Sherwood, E. Perelman, and B. Calder. Basic block distribu-
tion analysis to find periodic behavior and simulation points in
applications. In PACT ’01: Proceedings of the 2001 International
Conference on Parallel Architectures and Compilation Techniques,
pages 3–14, Washington, DC, USA, 2001. IEEE Computer Society.

[SPHC02] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automat-
ically characterizing large scale program behavior. SIGOPS Oper.
Syst. Rev., 36(5):45–57, 2002.

[WWFH03] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe. Smarts: acceler-
ating microarchitecture simulation via rigorous statistical sampling.
SIGARCH Comput. Archit. News, 31(2):84–97, 2003.

[YEL+06] J. Yi, L. Eeckhout, D. Lilja, B. Calder, L. John, and J. Smith. The
future of simulation: A field of dreams. Computer, 39(11):22–29,
2006.

159 L. Pustina, S. Schwarzer and P. Martini

UKPEW 2008 – http://ukpew.org/



Fluid flow analysis of a model of a secure key
distribution centre

Nigel Thomas∗ Yishi Zhao

Abstract

In this paper we consider the use of a fluid flow approximation based
on ordinary differential equations (ODEs) derived from a model of a key
distribution centre. The model is specified using the Markovian process
algebra PEPA. The basic model suffers from the commonly encountered
state space explosion problem when tackled using Markov chain analy-
sis. Fluid flow analysis is therefore one possible mechanism for deriving
approximate solutions for systems with large populations. The system
is analysed numerically and results derived from solving the ODEs are
compared with a queueing network approximation.

1 Introduction

In recent years a novel and intriguing approach to tackling the solution of a class
of very large stochastic process algebra models has been developed based on the
solution of ordinary differential equations [8]. This involves the analysis of the
system as a deterministic fluid flow, rather than as a discrete stochastic system.
Despite this apparent disparity between the analysis and the model, the results
are often surprisingly good and allow approximate solution of systems which
are not tractable by traditional means.

In this paper we aim to apply this form of analysis to a model of a key dis-
tribution centre, exploring the performance - security trade-off. It is clear that
in order to add more functionality to a system that more execution time is re-
quired. However in the case of security, the benefit accrued from any additional
overhead is not easy to quantify and so it is very hard for the performance engi-
neer to argue that a particular performance target should take precedence over
a security goal. Our initial inspiration for this work has been the study of the
wide mouth frog protocol by Buchholz et al [2]. The authors used the stochastic
process algebra PEPA to analyse timing properties of the protocol. Although
their motivation was to investigate timing attacks, the models developed in [2]
showed how authentication protocols can be modelled effectively in PEPA.

This paper is organised as follows. In the next section we introduce the
system to be modelled, the key distribution centre (KDC). This is followed by
a brief overview of the Markovian process algebra PEPA. Section 4 introduces
the basic model of the KDC, followed by a simplified (equivalent) version and
an approximation in Section 5. Some numerical results are presented in Section
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6, including comparison of the approximation results with simulation. Finally
some conclusions are drawn and areas of further work described.

2 Key Distribution Centre

We now describe the specific problem we seek to model. This is the secure
exchange of secret keys (also known as symmetric keys) using a trusted third
party known as a key distribution centre (KDC). The protocol is illustrated
below, following the description in [11].

!
!"

"

#
#
#$#

#
#%

&Alice Bob

KDC

12

3

5

4

Figure 1: Key Distribution Scenario.

• Alice and KDC share a key KA

• Bob and KDC share a key KB

1. Alice sends request to KDC with nonce N1

2. E{KA} [KS|request|N1|E {KB} [KS |IDA]]

- KS is a session key for Alice and Bob to use.
- Alice can’t decrypt the part encode with Bob’s key, she can only send

it on.

3. E{KB} [KS|IDA]

4. E{KS} [N2]

5. E{KS} [f(N2)]

where,

• N1 and N2 are nonces (random items of data),

• IDA is a unique identifier for Alice,

• E{KA}[X] denotes that the data X is encrypted using the key KA, and

• f(N2) denotes a predefined function applied to the nonce N2, signifying
that Alice has read the encrypted message sent by Bob.

The key features of this protocol are that only Alice can read the message
sent by the KDC (2) as only Alice and the KDC know the key KA. Included in
this message is another message further encrypted with KB, the key shared by
Bob and the KDC. Alice cannot read this message, but instead forwards it to
Bob (3). This message tells Bob that Alice is genuine (i.e. has communicated
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with the KDC and displays a correct ID) and informs Bob of the session key;
only Bob can read this message. Alice and Bob now both know the session key
KS and the remainder of the protocol ensures that Bob trusts Alice and the
session key (and Alice trusts Bob).

3 PEPA

A formal presentation of PEPA is given in [7], in this section a brief informal
summary is presented. PEPA, being a Markovian Process Algebra, only sup-
ports actions that occur with rates that are negative exponentially distributed.
Specifications written in PEPA represent Markov processes and can be mapped
to a continuous time Markov chain (CTMC). Systems are specified in PEPA in
terms of activities and components. An activity (α, r) is described by the type of
the activity, α, and the rate of the associated negative exponential distribution,
r. This rate may be any positive real number, or given as unspecified using the
symbol !.

The syntax for describing components is given as:

(α, r).P | P + Q | P/L | P !"
L

Q | A

The component (α, r).P performs the activity of type α at rate r and then
behaves like P . The component P + Q behaves either like P or like Q, the
resultant behaviour being given by the first activity to complete.

The component P/L behaves exactly like P except that the activities in the
set L are concealed, their type is not visible and instead appears as the unknown
type τ .

Concurrent components can be synchronised, P !"
L

Q, such that activities in
the cooperation set L involve the participation of both components. In PEPA
the shared activity occurs at the slowest of the rates of the participants and
if a rate is unspecified in a component, the component is passive with respect
to activities of that type. A

def= P gives the constant A the behaviour of the
component P .

In this paper we consider only models which are cyclic, that is, every deriva-
tive of components P and Q are reachable in the model description P !"

L
Q.

Necessary conditions for a cyclic model may be defined on the component and
model definitions without recourse to the entire state space of the model.

4 The model and its queueing network approx-
imation

In [12] we developed three approaches to modelling multiple clients requesting
session keys from the KDC. These approaches all model the same protocol and
are notionally equivalent at the syntactic level (they have a form of bisimi-
larity). However, they are not isomorphic and hence can give different values
for important performance metrics. The models specified in [12] suffer from
the commonly encountered state space explosion problem. To counter this we
have applied some simplification techniques to derive a form of the model which
gives the same results to key steady state metrics [13]. This model is specified
as follows:
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KDC
def= (request,!).KDC + (response, rp).KDC

Alice
def= (request, rq).(response,!).Alice′

Alice′
def= (sendBob, rB).(sendAlice,!).(confirm, rc).Alice′′

Alice′′
def= (usekey, ru).Alice

Bob
def= (sendBob,!).(sendAlice, rA).(confirm,!).Bob′

Bob′
def= (usekey,!).Bob

System
def= KDC !"

L

(
Alice !"

K
Bob|| . . . ||Alice !"

K
Bob

)

Where, L = {request, response}, K = {sendBob, sendAlice, confirm, usekey}.
Clearly the component Bob is almost redundant, and the sharing for the

action request and its enabling in KDC has no effect on the behaviour of the
model. Hence an even simpler equivalent specification would be:

KDC
def= (response, rp).KDC

Alice
def= (request, rq).(response,!).Alice′

Alice′
def= (sendBob, rB).(sendAlice, rA).(confirm, rc).Alice′′

Alice′′
def= (usekey, ru).Alice

System
def= KDC !"

response
(Alice|| . . . ||Alice)

This model and the preceding one are clearly isomorphic, i.e. they have
equivalent CTMCs with a one to one mapping between states and transitions.
We can now apply the well known approximation technique of combining succes-
sive internal actions into a single action with a modified rate. This is equivalent
to lumping states in the underlying Markov chain (Hillston [7] introduced the
weak isomorphism equivalence for exactly this purpose). Thus we obtain the
following simple form of the model.

KDC
def= (response, rp).KDC

Alice
def= (response,!).(τ, rx).Alice

System
def= KDC !"

response
(Alice|| . . . ||Alice)
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Where rx is given by

rx =
(

1
rq

+
1
rB

+
1
rA

+
1
rc

+
1
ru

)−1

This model is equivalent to a simple closed queueing system with one queue-
ing station (the KDC) and an exponential delay after service before returning
to the queue. It is a simple matter to write down the balance equations for such
a system.

(N − i)rxΠi = rpΠi+1 , 0 ≤ i < N

where Πi is the steady state probability that there are exactly i jobs waiting for
a response from the KDC and N is the number of pairs of clients (the number of
instances of Alice in the above PEPA model specification). Thus it is possible
to derive expressions for the average utilisation of the KDC and the average
number of requests waiting for a response.

Π0 =

[
N !

N∑

i=0

ρi

(N − i)!

]−1

and,

L = N !Π0

N∑

i=1

ρii

(N − i)!

where ρ = rx/rp.
This approximation is, in fact, an M/M/1/./N queue and the throughput

and average response time are easily computed from the above expressions (see
Mitrani [10] pages 195-197).

T = (N − L)rx

and
W =

N

T
− 1

rx

We can easily increase the number of servers at the KDC in the PEPA
specification.

System
def= (KDC|| . . . ||KDC) !"

response
(Alice|| . . . ||Alice)

In addition we must give the response action in Alice the rate rp, rather than
being passive.

Alice
def= (response, rp).(τ, rx).Alice

This is because a passive action would be subject to the apparent rate in PEPA.
Hence, K KDCs and 1 Alice would give rise to response occuring at rate Krp;
whereas if the rate is rp in both KDC and Alice, then this problem does not
arise.

Thus the approximation becomes an M/M/K/./N queue, where K is the
number of instances of the KDC component (i.e. servers at the KDC). Hence
the balance equations become,

(N − i)rxΠi = (i + 1)rpΠi+1 , 0 ≤ i < K

(N − i)rxΠi = KrpΠi+1 , K ≤ i < N
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Thus we can calculate Π0

Π0 =

[
N !

K−1∑

i=0

ρi

(N − i)!i!
+ N !

N∑

i=K

ρi

(N − i)!K!Ki−K

]−1

The average queue length can then be calculated by

L = N !Π0

[
K−1∑

i=1

ρii

(N − i)!i!
+

N∑

i=K

ρii

(N − i)!K!Ki−K

]

The average response time and throughput can then be computed as before.

5 ODE analysis

Thus far we have considered a traditional approach to modelling and analysis.
In this section we consider an alternative approach proposed by Hillston [8],
based on the solution of ordinary differential equations (ODEs). In this style of
model analysis, the model is expressed as a number of replicated components
and the ODEs represent the flow between behaviours (PEPA derivatives) of the
components. Thus, by solving the ODEs, it is possible to ‘count’ the number of
components behaving as a given derivative at any given time, t. In the absence
of oscillations, the limit, t −→∞, then gives a steady state value.

It is important to make two crucial observations about this approach. Firstly,
this is a fluid approximation, not discrete behaviour. Therefore, we observe a
continuous evolution of a derivative, so we can, at any given time, see a fraction
of an Alice behaving in some way, and another fraction behaving in another.
Secondly the analysis is deterministic. Thus, not only will simulating such a
system produce exactly the same results every time, but also if the rate of an
action is r, then a component will have completely evolved (or flowed) into its
derivative in exactly 1/r time units.

Rewriting our model, removing redundancy and naming each derivative of
Alice (for clarity) we get:

KDC
def= (response, rp).KDC

Alice
def= (request, rq).Alice1

Alice1
def= (response, rp).Alice2

Alice2
def= (sendBob, rB).Alice3

Alice3
def= (sendAlice, rA).Alice4

Alice4
def= (confirm, rc).Alice5

Alice5
def= (usekey, ru).Alice

The system is then defined as:

KDC[K] !"
response

Alice[N ]

Where, K is the number of KDC’s (hitherto K = 1) and N is the number of
client pairs (Alices’s). It is then a simple matter to write down the ODEs for
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this system as follows.

d

dt
Alice = ruAlice5(t)− rqAlice(t)

d

dt
Alice1 = rqAlice(t)− rpmin(KDC(t), Alice1(t))

d

dt
Alice2 = rpmin(KDC(t), Alice1(t))− rBAlice2(t)

d

dt
Alice3 = rBAlice2(t)− rAAlice3(t)

d

dt
Alice4 = rAAlice3(t)− rcAlice4(t)

d

dt
Alice5 = rcAlice4(t)− ruAlice5(t)

d

dt
KDC = 0

There are a number of approaches to solving this set of ODEs. For simplicity
we have simulated over a suitably long time frame until we observe the long run
(steady state) behaviour. In doing so we need to be careful that in discretizing
time we make the time step sufficiently small so as to not alter the system
behaviour. Typically we take the time step, δt, such that, δt ≤ 1/(rmaxN),
where rmax = max(rq , rp, rB , rA, rc, ru).

In our analysis we are interested primarily in the number of client pairs
awaiting a response from the KDC (or KDC’s). This is represented in the
model by the number of Alice1’s; L(N) = Alice1(t −→ ∞) when there are N
client pairs (Alice’s) in the population. From this we can derive the average
response time which can be compared with that derived from the queueing
network approximation. We compute the average response time for a system of
N client pairs and one KDC server (K = 1), W(N), as follows;

W (N) =
L(N − 1) + 1

rp

This computation is based on the queueing theory result of an arrival as random
observer, see Mitrani [10] page 141 for example. For K > 1 the computation is
only slightly more complex. If the random observer sees a free server, then the
average response time will be the average service time. However, if the random
observer sees all the servers busy, then the average response time will be the
average service time plus the time it takes for one server to become available
(including scheduling the other jobs waiting ahead of the random observer).

W (N) =
1
rp

, L(N − 1) + 1 ≤ K

W (N) =
1
rp

+
L(N − 1) + 1−K

Krp
=

L(N − 1) + 1
Krp

, L(N − 1) + 1 > K

It is a feature of the fluid flow approximation that (for t > 0) the KDC
will never be idle, but instead will always have some fluid flowing through it.
As such we are unable to compute the utilisation of the KDC directly. This is
clearly a limitation of this form of analysis.
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6 Numerical results

Figure 2 shows the evolution over time of the number of clients awaiting a
response as derived from the ODE analysis. Initially all the clients are behaving
as Alice, hence Alice1(0) = 0. Shortly after the start there is a large influx of
fluid into Alice1 before the system settles into a stable flow. Interestingly this
initial surge is much more pronounced when rp = 4 than rp = 1. This is clearly
due to the fact that the flow out of Alice1 is much greater when rp = 4.
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Figure 2: Number of waiting clients over time, N = 30, rq = rB = rA = rc = 1
and ru = 1.1

Figure 3 shows the average response time calculated by the ODE method,
compared with the queueing approximation described earlier. This approxima-
tion has previously been compared with simulation and shown to be accurate
to within the 95% confidence interval of the simulation [13].
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Figure 3: Average response time calculated by the ODE method and QN ap-
proximation, rq = rB = rA = rc = 1 and ru = 1.1

We expect the ODE method to be accurate when N is large. Figure 3
shows that it is possible to generate accurate results even when N is quite
small. However, there is a clear difference between the two methods where the
gradient changes. This is shown more explicitly in Figure 4, where the evolution
of the ODEs is compared with the stochastic simulation of the PEPA model [1]
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derived directly using the PEPA Eclipse Plug-in. When N is sufficiently far
from the gradient change there is good agreement between the ODE solution
and the stochastic simulation. However, at N = 6 the divergence is significant;
the stochastic simulation never achieves the lower queue length predicted by the
ODEs.
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Figure 4: Number of waiting clients over time, rp = rq = rB = rA = rc = 1 and
ru = 1.1

It is of clear practical importance to be able to predict the divergence. This
point, N∗, can be estimated using the method of asymptotic bounds of closed
queueing networks (see Haverkort [6] pages 245-246 for example).

N∗ = K +
Krp

rx
= K + Krp

(
1
rq

+
1
rB

+
1
rA

+
1
rc

+
1
ru

)

Below N∗ the asymptotic bound is given as

L(N) =
Nrx

rx + rp

Above N∗ the asymptotic bound is given as

L(N) =
Nrx −Krp

rx

These bounds can also easily be found by solving the ODEs analytically in
the limit t −→ ∞, where the min(KDC(t), Alice1(t)) term is replaced with
Alice1(t) and KDC(t) respectively. Thus, in this instance at least, the ODE
solution is giving an alternative means for calculating known asymptotic results
for closed queueing networks. Note that W (N) is computed from L(N + 1),
and so in Figure 3, the divergence occurs at approximately 6.91 (rp = 1), 11.82
(rp = 2) and 21.64 (rp = 4), i.e. N∗ + 1.

We have also compared the two methods for larger values of N and have
found there to be almost no difference for N > 40 for the parameters used
here. It is important to note that there are numerical issues with computing
the queueing approximation due to the difficulty of handling large factorials
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(and their reciprocals) and these problems do not occur with the ODE solutions
or asymptotic results. Thus, as long as we avoid the region around N∗, the
ODE solution is giving accurate results without problems with scalability.

6.1 Multiple KDC servers

We now turn our attention to the consideration of multiple servers at the KDC.
In particular we would wish to know if it is more beneficial to increase the
number of servers or increase the speed of the server. It is well known that
for an M/M/K queue, it is preferable to have 1 server serving at rate µ than
K servers serving at rate µ/K. This is because if there are less than K jobs
in the queue then some of the K servers will be idle, thus reducing the overall
service rate. In the ODEs above this is evident in rpmin(KDC(t), Alice1(t)).
If Alice1(t) > K then all K servers are in use and the flow rate from the KDC
would be Krp. However, if Alice1(t) < K then fewer servers would be in use
and the rate would be rpAlice1(t).

Figure 5 shows the proportion of Alices waiting at the KDC (i.e. L(N)/N)
for K = 1 with rp = 4 and K = 4 with rp = 1 for both the queue approximation
and the ODE solution. When N is large (in this case N ≥ 25) the ODE values
are the same, however for smaller N the single faster server is seen to perform
better (for the reason discussed above). The reason the ODE values are identical
for large N is simply that the fluid level of Alices waiting at the KDC will never
fall below K in the ODE solution. The values for the QN approximation differ
slightly from each other, even when N = 40. This is because even at this
load there is still the chance that the queue will fall below 4 requests for short
periods. Clearly, as N increases the probability that this happens will become
increasingly insignificant and hence the values will converge.
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Figure 5: Proportion of Alice1 components, calculated by the ODE method and
QN approximation, rq = rB = rA = rc = 1 and ru = 1.1

There is a clear divergence between the ODE and QN results around the
change in gradient as we have already observed in Figure 3. Figure 6 shows
this in more detail for the average queue size. Note that although the two ODE
solutions converge at N = 25, there is still a significant difference with the QN
solutions at this point, near to N∗.
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7 Conclusion and further work

In this paper we have shown how a model of a key distribution centre can be
solved approximately using ordinary differential equations. We have compared
the results with those derived from a scalable queueing approximation. The
ODE approach as two main limitations. Firstly, it is not always as accurate
as the queueing approximation and secondly, we have not been able to obtain
all our desired metrics. However, the ODE approach does not suffer the same
numerical problems as the queueing approximation, is extremely efficient to
solve and is shown to be extremely accurate when the number of clients is large.
By using the asymptotic results, it is possible to compute the metrics of interest
extremely efficiently.

The next step in the study of this model of key distribution is to explore
the use of a cost model to better understand the relationship between the KDC
server capacity and the quality of service. To do this we will introduce costs
for waiting jobs and providing service capacity (e.g. the number of servers)
and minimise the resulting function to produce an optimal service capacity for
a given cost structure. In doing this, the asymptotic results derived from the
ODE solution are likely to provide the most tractable approach. We also aim
to extend this analysis to a more general form of secure protocol in the area of
non-repudiation. A parallel line of investigation involves exploring more general
closed queueing network models in PEPA to discover if the ODE approach facil-
itates an efficient means of finding asymptotic results as has been demonstrated
in this paper. This would be a worthwhile study as in process algebra, it is not
always clear that a model can be represented as a queueing network and so such
a result could potentially open an alternative means of analysis for this class of
model.
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Abstract 

This paper proposes a novel approach to evaluate the performance of 
database designs using queuing networks. It differs from other methods of 
database system performance evaluation in that the performance assessment is 
specifically targeted at the database design, not at the database system software 
architecture. The value of the proposed method for the performance evaluation 
of database designs is demonstrated through comparisons with the 
implementations of the TPC-C benchmark. 

1   Introduction 
Research in the area of database (DB) system performance evaluation has been 
limited, primarily by the focus on database management system (DBMS) component 
performance in the database field [1] and the concentration of the performance 
engineering community on software system architectures and design models [2]. 
Performance evaluation of database designs, as described in this paper, to the best of 
our knowledge, has not been previously addressed. 

Conventional software testing methods do not aid in database design assessment as 
software testing focuses on the functionality of the system [3] and how well it 
conforms to its requirements. Performance requirements are tested through software 
performance engineering techniques [4], but these techniques, again, focus on the 
functionality of the whole system. No efforts are made towards the changes that occur 
inside the database and their effect on overall system performance, as demonstrated in 
[4] and [2].  

Moreover, most of the research work in database system performance evaluation 
[5-10] assesses the performance of these systems at the software architecture level 
and is mostly concerned with physical capacity planning, not database design 
troubleshooting [11]. Contrary to this trend, this paper proposes an original method to 
evaluate the performance of database designs in early development phases using 
queuing networks. 

The intention of this paper is to establish the validity of our method in effectively 
modelling database design performance as a first step in achieving a complete 
framework for the performance evaluation of database designs and database systems. 
This work is an implementation of the ideas described in [11]. The contributions of 
this paper are as follows: 

• We demonstrate the suitability of queuing networks for database design 
performance modelling. 
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• We propose a novel performance evaluation model of database designs using 
queuing networks.  

• We present an empirical evaluation of our technique by applying it to the 
Transaction Processing Performance Council (TPC) TPC-C database system 
benchmark, demonstrating the merit of our approach, as well as presenting 
performance measures for the TPC-C benchmark queuing network model. 

The rest of this paper is organized as follows: in Section 2, the modelling technique 
is described. Experimental results are in Section 3. Conclusions and future work are in 
Section 4. 

2   The Proposed Approach 
Database system performance is usually measured in terms of query and transaction 
response time; the major indicator of a system capacity problem. After a database 
system exhibits a performance problem, the main effort of post-deployment 
performance tuning is concentrated on the revision of the design of the database and 
the transactions running against the database [12-15]. Hence, if the flaws of the 
database design were discovered before system implementation and deployment, 
some of the post-deployment performance problems would have been avoided. The 
database design artifacts are the main contributors to performance problems; 
therefore, an early evaluation of their performance coupled with the knowledge of the 
application design is a major factor in the reduction of post-deployment database 
tuning. 

Now, consider a database design with tables and transactions that access these 
tables. A valid assumption would be: 

Total response time of a transaction =  

 
where table 1,2, …, n  are the tables accessed by the transaction. 
 
But: 

• total time to wait for access to the table = total time waiting for other 
transactions to complete their access to the table; this can be considered as the 
queuing time; 

• total time to access the data = total number of  disk accesses (I/O DB pages) to 
fetch the data into main memory × the duration of one disk access  +  total 
time to complete the operations on the data; this can be considered as the 
service demand; 

• total time to return data to the client depends on the rate the data oscillates 
between the client and the server; 

• total time to process procedural statements depends on the processing speed of 
the client. 

Therefore, the relationship between tables and transactions can be represented as a 
queuing system and modelled using a queuing network. In the queuing network the 
tables will represent the shared resources, i.e. the servers, and the transactions that use 
these resources are the customers. Total time to return data to the client and process 

(total time to wait for access to tablei +  

  total time to  access the data of  tablei  +            

  total time to return data to the client from tablei) +  
  total time to process procedural statements on the client 
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procedural statements can be aggregated for each transaction as the client think time 
or added as a delay resource in the queuing network.  

Performance modelling of database designs is possible because transaction service 
demands on their relevant tables can be estimated from the procedural structure of the 
transaction design, i.e., from the SQL statements, the procedural statements and the 
structure and relationships between tables by using database query optimization 
techniques [13, 14, 16]. Disk I/O cost is the dominant factor [16, 17] in query 
execution costs, especially for large databases; this is the cost criteria that is used to 
calculate service demands for transactions on the relevant tables for our queuing 
network models. Other performance evaluation inputs, e.g., frequencies and counts of 
transactions, number of transaction invocations, user population, etc, are available or 
can be calculated from the application design [4]. In our approach, we limit ourselves 
to the query optimization techniques that are available to database designers in 
commercial DBMS,  see [13], [14], or [16]. 

2.1 Building the Queuing Network  

The steps to build a queuing network model for a database design are described next. 

The Input 
A database design composed of:  

• Tables: 

• Structure, data types, attribute selectivity, etc. 

• Expected number of rows and record length. 
• Index types and structure.  

• Transactions: 

• Rate of occurrence or % of total transactions. 

• Structure : 
o SQL statements: 

! Tables accessed.  
! Join/retained attributes: sequence, selectivity.  
! Access path: can be calculated in I/O DB pages. 

o Procedural statements. 

The Method 
The servers in the queuing network model are classical M/M/1 queues with 

parameters specified based on the database design. 
 

1. Specify server parameters: 

• Servers: each table in the database design is a server in the queuing 
network; partitioned or replicated tables are represented as separate 
servers. 

• Customer classes: each transaction type is considered as a different 
customer class: transaction types that access identical tables with equal 
service demands may be considered as one class. 

• Queuing discipline is FCFS: DBMS use queues to control access to 
data objects; a new transaction is given access to a data object 
depending on the state of the current transactions waiting to access or 
currently accessing the data object. Depending on the concurrency 
control mechanism implemented by the DBMS, access is either granted 
immediately to the new transaction or it is forced to queue behind the 
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current transactions [13]. FCFS abstracts this in forcing all transactions 
to wait. 

• Queue length is infinite: this is based on the assumption that aborts due 
to deadlocks are rare in DBMS [13] and that system overload causes 
long response times instead of transaction aborts.  

2. Specify performance characteristics for the customer classes: 

• Transaction service demands on each server: the total cost of executing 
the SQL statements in terms of I/O DB pages (service demands are 
assumed to be exponentially distributed with the mean being the 
calculated I/O DB page cost × the duration of one disk page access).  

• Transaction arrival rates (open queuing network) or number in system 
(closed queuing network). 

• Transaction think times. 
3. Specify the routing table for the customer classes; i.e. the order in which the 

transactions access their tables.  
4. Solve the queuing network model. 

The Output 
Depending on the complexity of the queuing network model and the solution 

method used, some possible outputs are:  

• For each table  

• Bottleneck resource 

• Total access compared to other tables 
• Mean queue length 

• Mean waiting time to access the table 

• For each transaction 

• Mean response time  

• Mean waiting time to access each table  

• Response time distribution 

3   Validation of the Approach 
The Transaction Processing Performance Council (TPC) TPC-C benchmark revision 
5.8.0 [18] is used as an example of a database system design. The TPC-C disclosed 
implementations in [19-23] are used as examples of the implemented database 
system. The TPC-C benchmark is a design specification of an order-entry system. The 
specification is composed of [18]: 

• 9 tables (WAREHOUSE, DISTRICT, CUSTOMER, HISTORY, ORDER, 
NEW-ORDER, ORDER-LINE, STOCK, ITEM); 

• 5 transactions (New-Order, Payment, Order-Status, Delivery, Stock-Level). 
 A brief description of the transactions is in Table 1. The details of the design of 

the tables, the relationships between them, and the details of transaction functionality 
can be found in [18].  

The TPC-C benchmark also includes performance specifications related to the 
implementation of the database system such as keying and think time distributions for 
transactions and the probability of operations on the database and the probability of 
choosing the values of the parameters for the transactions [18]. 
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Table 1. Summary of the TPC-C benchmark transactions. 

Transaction Description 
Min. % of the 

total number of 
transactions  

New-Order Initiates a new order. No minimum 

Payment 
Updates the customer’s balance and reflects the 
payment on the district and warehouse sales statistics. 

43 

Order-Status Queries the status of a customer’s last order. 4 

Delivery1 
Processes a batch of 10 new orders, one for each 
district for a given warehouse. 

4 

Stock-Level 
Counts the number of items in the last 20 orders in a 
district that fall below the stock threshold. 

4 

3.1 Experimental Results 

Using the transaction descriptions of the TPC-C benchmark in [18] and the order of 
execution, index structures and SQL statements described in [19-23] in addition to the 
assumptions detailed in the appendix, the service demands (number of I/O DB pages) 
are calculated for the transactions on each table by using query optimization 
techniques. Details of applying query optimization techniques to estimate query DB 
page cost can be found in  [13, 14, 16]. The cost model is described in [13]. 

Applying the steps described in Section 2 we get the service demands for all the 
transactions (Table 2) and the multi-class queuing network of Fig. 1. The TPC-C 
benchmark specifies that the transaction think times follow an exponential 
distribution and we have assumed that the service demands for the transactions on the 
tables are exponentially distributed with means as calculated in Table 2. 

 

Table 2. Service demands for the TPC-C benchmarks. 

Service Demands (in DB pages)2 
Transactions 

I II III IV V VI VII VIII IX 

New-Order 1.2 2.2 1.2 0 2.2 2.2 7.3 7.3 4 

Payment 2.2 2.2 12.76 2 0 0 0 0 0 

Order-Status 0 0 15.51 0 3.45 0 4.63 0 0 

Delivery 0 0 7.3 0 13.2 19.7 15.4 0 0 

Stock-Level 0 1.2 0 0 0 0 10.63 200.76 0 
I = WAREHOUSE, II= DISTRICT, III= CUSTOMER, IV= HISTORY, V= ORDER, 

VI= NEW-ORDER, VII= ORDER-LINE, VIII= STOCK, IX= ITEM 

 
Figure 1 is a multi-class queuing network, which was solved using simulation. The 

queuing network was simulated with 9 servers (tables), 5 classes (transactions) and 
1500 users (terminals) using QNAP2, a discrete-event simulator for queuing networks 
[24], at 95% confidence interval. The small number of users (terminals) is due to the 
limitations of the QNAP2 package. The implementation in [19] has 80,000 users 
(terminals). 

The TPC-C benchmark only specifies the disclosure of response times for each 
transaction, which is what the simulation measured. Figures 2a – 2e show the 
response time frequency distribution for the QNAP2 simulation and the disclosed 

                                                           
1 The Delivery transaction is a deferred execution transaction with its response time calculated when it is 

queued for service (deferred response time) and when it finishes service (interactive response time). 
2 These values are multiplied by the duration of one disk page access to give the final service demands used 

in the simulation (see the appendix). 
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results in [19] for the transaction classes. In Fig. 2a - 2e and Fig. 3b, we have used 
HP1 to reference [19]. 

 

 

Fig. 1. Multi-class queuing network model for the TPC-C benchmark. 

 
Due to the fact that actual data is not available for the TPC-C disclosed 

implementations, the comparison between our simulated model and that of [19] is 
conducted by using the graphs of these disclosed reports. The TPC-C specification 
states: for the response time frequency distribution graphs, the x-axis represents the 
transaction response time and must range from zero to four times the measured 90th 
percentile of the measured response times for that transaction and that at least twenty 
different intervals, of equal length, are to be reported [18]. The simulation graphs 
were plotted in this way, therefore a comparison between the different response time 
frequency distributions is possible.  

From Fig. 2a - 2e, the response time frequency distributions for the simulated 
queuing network model of the database design are similar to those disclosed in  [19]. 
This is in spite of the fact that the scales on the graphs are different. In addition, the  
implementations in [20-23] exhibit the same performance behavior as that of [19]. 
Hence, the simulated queuing network model of the database design exhibits the same 
performance behavior as that of the actual implemented database systems in [19-23]. 
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Fig. 2a. The response time frequency distribution for the New-Order transaction. 
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Fig. 2b. The response time frequency distribution for the Payment transaction. 
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Fig. 2c. The response time frequency distribution for the Order-Status transaction. 

Simulation HP1 

90th: 0.0

Avg: 0.000007

0

20000

40000

60000

80000

100000

120000

0 0.00005 0.0001 0.00015 0.0002 0.00025

response time (seconds)

#
 o

f 
tr

a
n

s
a
c
ti

o
n

s

  

Fig. 2d. The response time frequency distribution for the Delivery (deferred) transaction. 
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Fig. 2e. The response time frequency distribution for the Stock-Level transaction. 

Figure 3a shows the average response time for the transactions of the simulated 
queuing network model of the TPC-C benchmark. Figure 3b, depicts the average 
response times for the TPC-C benchmark transactions disclosed in [19-23]  
(respectively HP1, HP2, IBM1, IBM2 and Bull) as well as the overall average of 
these disclosed results. These disclosed results utilize the TPC-C benchmark 
implementation for the Oracle DBMS.  From Fig. 3b, the average response times of 
the transactions have a certain pattern in relation to each other in all implementations. 
The New-Order, Payment and Order-Status transactions have very similar average 
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response times, while the Delivery (deferred) transaction has the least average 
response time, the Stock-Level transaction has, on average, the longest average 
response time and the Delivery (interactive) falls between the Delivery (deferred) and 
the New-Order, Payment and Order-Status transactions.  
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Fig. 3. (a) Simulation results for the average response time for the TPC-C benchmark 
transactions. (b) Average response time for the TPC-C benchmark transactions in  [19-23]. 

From Fig. 3a the average response times given by the simulated queuing network 
model of the TPC-C benchmark design have this same pattern. There is a difference 
in the Stock-Level and the Delivery (interactive) transactions, which show relatively 
long average response times compared to the pattern shown in the implementations. 
This is not surprising, since the Stock transaction is a heavy JOIN transaction; it 
queries the DISTRICT, ORDER-LINE, and STOCK tables, with its largest service 
demand on the STOCK table (see Table 2). This difference is due to the fact that the 
implementations in [19-23] keep the STOCK table in the DBMS buffer at all times, 
therefore the Stock-Level transaction is faster. Buffering is not considered in the 
model at this stage, hence, the Stock-Level transaction runs faster in the 
implementations than in the model. This result was to be expected. 

The Delivery (interactive) transaction is implemented in [19-23] using the Oracle 
PL/SQL FORALL construct which improves performance due to the elimination of 
context switches that usually occur in the execution of SQL statements in PL/SQL 
FOR LOOPs. There is no official measure of the expected performance gain that is 
achieved when implementing the TPC-C benchmark using the Oracle PL/SQL 
FORALL construct instead of the Oracle PL/SQL FOR LOOP (no TPC-C disclosed 
reports are available for older versions of the Oracle DBMS). Therefore, we have 
assumed a 66% performance gain when using the Oracle PL/SQL FORALL construct 
over the use of the Oracle PL/SQL FOR LOOP, based on the average performance 
gain described in the Oracle DBMS literature [25-27]. This gave the results in Fig 3a. 

From the previous results, the queuing network model of the TPC-C benchmark 
database design exhibits comparable performance behavior and a similar transaction 
average response time pattern. The queuing network model was able to capture the 
expected behavior of the database transactions, using the details of the database 
design, the transaction DB I/O page costs, and the assumptions detailed in the 
appendix without considering the level of detail of the TPC-C benchmark disclosed 
implementations. This demonstrates the ability of the model to represent the database 
system. 
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3.2 Performance Measures 

The simulation of the TPC-C benchmark queuing network was run for 10, 100, 
500, 1000 and 1500 clients to illustrate the models behavior under different load 
conditions. The TPC-C transaction mix is that of Table 1.  Figures  4 - 6 show the 
throughput, mean response time, mean queuing time for the TPC-C queuing network 
transactions. Figures 7 and 8 show the mean queue length and mean queuing time for 
the tables (servers) of the TPC-C queuing network model. Figure 9 shows the 
relationships of the mean queuing times on each table for each TPC-C transaction. 

As indicated by Fig. 4-6, throughput, mean response time and queuing time for the 
transactions increase as the load on the model is increased. This holds for the mean 
queue length and mean queuing time for the tables from Fig 7 - 9.  This result is 
typical of any database system: the transaction load affects performance. 

Using these figures, we will demonstrate how a database designer can deduce 
performance indications from the database design. 
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Fig. 4. Simulation results for the throughput 
of the TPC-C transactions. 

Fig. 5. Simulation results for the mean 
response time for the TPC-C transactions. 

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

10 100 500 1000 1500

# of clients

m
e
a
n

 q
u

e
u

e
in

g
 t

im
e
 (

s
e
c
o

n
d

s
)

New-Order Payment Order-Status

Delivery Stock-Level System  

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

10 100 500 1000 1500

# of clients

m
e
a
n
 q

u
e
u
e
 l
e
n
g
th

WAREHOUSE DISTRICT CUSTOMER HISTORY ORDER

NEW-ORDER ORDER-LINE STOCK ITEM System  

Fig. 6. Simulation results for mean queuing 
time of the TPC-C transactions. 

Fig. 7. Simulation results for the mean queue 
length for the TPC-C tables. 

Fig. 8. Simulation results for the mean 
queuing time for the TPC-C tables.  
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From Fig. 5 and 6, the Stock-Level transaction has the longest mean response time 
and mean queuing time, longer than the overall system mean response and queuing 
times, even though the Stock-Level transaction has low throughput (Fig. 4), 4% of the 
total throughput (this is incorporated in the TPC-C benchmark specifications). This 
indicates that this transaction is a candidate for performance tuning, i.e. redesign. 

In addition, from Fig. 7 and 8, the STOCK table has the longest mean queue length 
and the longest mean queuing time, longer than the overall system mean queuing 
time, even though the STOCK table is accessed by only two transactions (New-Order 
and Stock-Level), in contrast to the CUSTOMER table that is accessed by four 
transactions (New-Order, Payment, Order-Status, Delivery). Furthermore, from Fig. 
9, the majority of the waiting time spent by the New-Order and Stock-Level 
transactions is queuing for the STOCK table. Given that the TPC-C benchmark 
specifies the New-Order transaction as the measure of system performance [18], the 
STOCK table is a major bottleneck for the New-Order transaction as well as the 
Stock-Level transaction. 

The data retrieved by the New-Order and Stock-Level transactions from the 
STOCK table cannot be changed due to the TPC-C specifications, i.e. these 
transactions cannot be redesigned and hence their service demands cannot be 
changed. Therefore, a redesign of the STOCK table or its access methods (indexes) 
would benefit the response time of both the Stock-Level and New-Order transactions. 
This conclusion is consistent with the TPC-C implementations that have kept the 
STOCK table resident in the DBMS buffer [19-23], therefore eliminating I/O disk 
access, thus decreasing transaction response times. 
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Fig. 9. Simulation results showing the relationships between mean queuing times on the tables 
for the TPC-C transactions for different number of clients.  

4   Conclusions & Future Work 
In this paper, we have proposed a novel modelling technique to evaluate the 
performance of database designs using queuing networks. This original approach adds 
the element of dynamic modelling of the database design, giving the database 
designer more visibility on the expected performance of the design before 
implementation, thereby improving database designs and preventing costly post-
deployment database tuning.  

We have shown that our database design performance model has the ability to 
evaluate expected database system performance from database designs. This has been 
established through the modelling of the TPC-C benchmark design and comparing the 
simulated results with the disclosed TPC-C benchmark implementation results. The 
queuing network model for the TPC-C benchmark database design was able to 
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capture transaction performance behavior and to pinpoint database design artifacts for 
performance redesign. 

This work is an early step towards a performance evaluation methodology for 
database designs. Extensions to the current database design performance model are 
proposed by adding a more detailed representation of DBMS, namely a refined 
representation of the DBMS storage subsystem and the incorporation of temporary in-
memory SQL operations in the query I/O cost model.   

With the emergence of 24x7 Web-based e-service applications with back-end 
databases performance evaluation of database designs can no longer be ignored. 
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Appendix: Modelling Assumptions 
1. SQL Cost Estimation Assumptions 

a. SQL statement DB pages cost was based on the cost model described in [13]. 
b. Temporary tables are completely held in main memory; therefore any 

manipulation of intermediate results incurs no costs. 
c. It is assumed that all data pages are flushed from memory after a SQL 

statement completes its operations on the data; no caching is involved.  
d. Relational algebra JOIN operations are modelled on the queuing network as 

sequential access to the tables in the order that they are accessed by the query 
optimizer (this information is available on the query tree). 

2. TPC-C Benchmark Assumptions  
a. No transaction rolls back; 
b. The Payment and Order-Status transactions are invoked using the customer’s 

last name only; 
c. The effect of the growth of the tables due to the execution of the New-Order 

transaction is not taken into account when calculating service demands for 
transactions. 

d. The average value for all parameters is used. 
e. The average number of customers with the same last name and the average 

number of repeated items in 20 orders for the Stock-Level transaction was 
calculated through a simulation of the nonuniform random functions stated in 
the benchmark with parameter C=1. 

f. Time to return data to the client during the execution of the transaction is not 
considered. 

3. Miscellaneous Assumptions 
a. Database block size=2048 bytes and DB pages are fully loaded. 
b. Disk I/O access time is 0.00002 seconds per DB block/page. 
c. Locking and locking delay is not considered. 
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Construction of novel continuous time
Markovian queues for exact solution

David J. Thornley∗

Abstract

Modern, complex computation and network traffic patterns demand
sophisticated modeling representations which capture detail of both tim-
ing and magnitude of processing and communication activity. Batched
queuing models aim to achieve this by including stochastic unit and non-
unit transitions between queue lengths at instants generated by Markov
modulated Poisson processes. It has previously been shown that an MMPP
may approximate a general interval distribution to arbitrary precision. We
now describe how a general batch size distribution may be approximated
using superposition of compound Poisson processes with real and complex
distribution parameters, these latter taking the form of imaginary distri-
butions, which sum to give real, positive distributions. We explore the
construction of probability flux patterns in the continuous time Markov
chain which can be used to approximate general batch transaction mod-
els. This may be preferable to the heuristic solution spectrum truncation
common when analysing arbitrary batch transaction size distribution with
a more traditional matrix analytic approach.

1 Introduction

The continuous time, discrete state Markov modulated queue is one of the most
thoroughly research performability modeling entities. Time intervals in real sys-
tems can be matched by using phase-type distributions, or more general Markov
arrival processes, each of which synchronizes a transition in the queue with ab-
sorption in a transient Markov chain. Such distributions can approximate any
distribution given sufficient states in the chain. The the gap between provision
of this capacity and implementation in a practical system lies in the establish-
ment of an effective and stable matching approach, many of which have begun
to emerge recently.

Éltető, Rácz and Telek have described the use of minimal coefficient of varia-
tion matrix exponentials in the approximation of deterministic time intervals [8].
While the particular approch to generation of these continuous distribution ap-
proximations has not yet been proven, a small class has been successfully for-
malized more recently [11], and the value of such results is beyond question.
They describe modal and oscillatory terms which arise from the eigensystem of
the matrix, and these can be used to build interesting distributions if a suitable
matrix can be formulated with the required eigenvalues.

∗Department of Computing, Imperial College London, 180 Queen’s Gate, South Kensing-
ton, London SW7 2RH, djt@doc.ic.ac.uk

A. Argent-Katwala, N.J. Dingle and U. Harder (Eds.): UKPEW 2008, Imperial College London, DTR08-9
pp. 184–198, http://ukpew.org/



In addition to a requirement for control over time interval distributions,
it is also desirable to match real distributions of transaction sizes, commonly
called batches. We may require large, deterministic batch transaction sizes
in a queue, while retaining efficient solubility. We have previously formulated
a means by which queues with geometrically distributed batch sizes may be
solved, and this is achieved in a directly soluble discrete state, continuous time
Markov modulated queue which already involves mathematical entities closely
related to those discussed by Éltető et al. The present work relates to the
formulation of queues based on geometrically distributed batch transaction sizes.
These are discrete state, continuous time Markov modulated queues in which
the probability of transitioning between two queue levels is a sum of terms
geometric in the jump size. We will refer to this simply as a geometrically
batched queue. The novel formulation in batch size distribution provides the
means by which arbitrary distributions may be constructed. It is well known
that any waveform may be approximated by a superposition of a number of
sinusoids (consider the work of Fourier, and the discrete cosine transform in
signal analysis work). Since we provide oscillatory terms, this introduces a
similar degree of flexibility in transaction size distribution to that introduced
in time interval by Markov modulation. There are also opportunities for coarse
approximation using simpler modal terms.

In this paper we describe the formulation and preparation for solution of a
class of queues with batched arrival, departure and removal processes defined on
bands of queue lengths, with parameters chosen to reproduce non-monotonically
distributed batch sizes. We add to the state of the art by introducing batched
processes to banded queues, and by identifying and quantifying the opportunity
to produce non-monotonic batch size distributions.

2 Background

Work on the construction of geometrically batched queues for direct solution (in
contrast to a maximum entropy approach introduced by Kouvatsos [13]) took
off with an ATM model by Harrison and Chakka [15], with exact solutions using
spectral expansion as espoused by Mitrani and Chakka [12]. This was later de-
veloped to incorporate a negative customer arrival process [16]. This important
step introduced the concept of superposition of departure processes in the pro-
cessing completion and customer removal due to negative customers. Chakka
and Harrison then provided proofs of the correctness of localized equations for
a canonical geometrically batched queue [17], and with positive and negative
customer arrivals [4]. In the same year, Harrison’s MEGAN research project to
investigate the use of geometrically batched queues in networks began. Harri-
son’s concept of a geometrically batched node with superposed arrival streams
and link traffic approximated as a compatible process led to a successful im-
plementation of a processor-farming network model with multiple queues and
feedback [10]. As part of this process, the formulation approach for the queue
itself underwent a radical change, resulting in an automated process which will
formulate finite balance equations for a geometrically batched queue with an
arbitrarily complex description [20].

Concurrently with our dissemination of this automated approach, Chakka et
al provided important example applications, with the addition of a more com-
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plex processing description, using the original approach of hand-crafting the
equations [2, 3, 6]. We successfully implemented an important enhancement to
the queue formulation – proposed by Chakka – in which queue length depen-
dency is approximated by defining processes in bands of queue length, with a
clear demonstration of the improvement of accuracy by comparison with simu-
lation [18] using geometrically batched queues in a network with tight feedback
to emphasize the value of the banding. Do, Chakka et al have used an un-
batched banded queue to model a web service [5]. We believe this to result from
the prohibitively high complexity of their preferred approach to balance equa-
tion localization. We present here an imperative approach which represents an
addtional simplification of the recursive approach we first presented in [20].

We, in common with Chakka and co-workers, have consistently used spectral
expansion as originally advocated by Mitrani and Chakka [12] due to its explicit
presentation of the independent componenets of the behaviour of the solution.
The controversy surrounding this decision - which may have contributed to the
delay in the material from [2] reaching a journal [1] in an updated form - has
been resolved [19]. The choice of solution mechanism is now open, and depends
more on the precise form of the queue, and the context within which it is to be
used. Chakka [1] explains the spectral expansion method clearly, so we refer to
this with some addition of detail relating to the solution of banded queues.

3 Probability flux geometrically distributed over
jump size

The present development of the automated approach enables us to view the
geometric terms in a more abstract manner. In [1], for example, the queue for-
mulation is prepared in terms of superposed streams of customer transactions.
It is also reiterated that this superposition can act to approximated hyperexpo-
nential distributions. However, when we view the batch transaction process, we
note that the single requirement for validity is that the total probability of tran-
sition is constant. This frees the use of the geometric terms to be a basis set for
constructing any distribution we desire, so long as the result is always positive.
This is exactly the same premise as used by T. Éltető et al when describing
freely defined time delays constructed from the eigenvalues of the matrix ex-
ponential. In that case, the problem of matching a real process is complicated
by the freedom of expression in the matrix exponential. In our case, we may
directly state the components. These may be complex conjugate pairs to evoke
a real oscillatory term, or negative to contribute to a modal distribution.

One advantage of this approach is that we now have a method for con-
structing a class of queues for which there is a wide range of results relating to
measures of sojourn time and reward, which can be extended to encompass the
new formuation. Another is that this work complements recent forays into al-
ternative representations for queues, including the Fokker Planck equations [7],
by bringing us closer to matching arbitrary network node work patterns - in
terms of both time delay and task magnitude. An important consequence of the
simplified, mechanical process we describe for providing finite Chapman Kol-
mogorov probability flux balance equations is the ability to rapidly prototype
novel queues which can be solved for equilibrium state occupation probabilities,
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and hence analysed for further measures, and incorporated into networks.
We have recently analysed the character of the eigenspectrum of the equilib-

rium solutions for Markovian queues [19], revealing that the spectrum size can
be controlled if a certain constraint is placed on the formulation of the queue.
If the transition processes between queue lengths for any given parameter se-
lection phase comprise a sum of geometric series in the jump size, then the
spectrum size is finite, and can be calculated based on the queue description
before solution is attempted. We do not claim that this is the only satisfactory
constraint, but it has proven sufficient. This constraint is satisfied by the class
of geometrically batched Markov modulated Poisson process queues.

4 Queue balance equation formulation

The total steady state vector of a queue, dotted with the jth column of the
instantaneous generator matrix of the queue is commonly shown in the following
form:

f∑

i=1

vj−1pFi + vjp(L) +
b∑

i=1

vj+1pBi, where L = Q−D(
f∑

i=1

Fi −
b∑

i=1

Bi)

Where vj is the vector of state occupation probabilities at queue length j for
each modulation state. When this term is set equal to a vector of zeros of the
appropriate length, it provides a Chapman Kolmogorov balance equation for
the queue’s steady state. Throughout this paper, we omit showing the equation
of such probability flux terms to a zero vector.

Matrices Fi hold the probability flux rates for a jump size of i due to arrivals.
Similarly, Bi give processing completions or removals (for example, due to neg-
ative customers). These matrices are not always diagonal, for example when
phase type or MAP processes are used. To introduce our particular formulation
of such a queue, which is less general because of the constraint on the form of
the matrices F and B, but guaranteed soluble with a finite eigenspectrum of
calculable size. In [19] we prove that the eigenspectrum size can be a barrier to
solubility. We consider a general formulation of the balance equations within
the class of geometrically batched queues.

Let us consider three main forms of geometric component for constructing
batch transaction size distributions, in common with much previous work on
the geometric queue. We reproduce the expression from [20] which defines the
Chapman Kolmogorov probability flux term for any queue length in an MM
CPPk/GEk/kc/L Gk queue (i.e. k processors of same rate):

pj =
j−1∑

i=0

vi

[ ∑narr

k=1 Λk(1−Θk)fj<LΘk
j−i−1

]

+ vj

[
Q−

∑narr

k=1 Λk fj<L

−
∑nkill

k=1 K f((j>κb)∨hp)βj −
∑nserv

k=1 Ck,j

]

+
L∑

i=j+1

vi

[ ∑nkill

k=1 Kk(1−Rk)fj>κb Rk
i−j−1 f (j≥κb)

∨(hp∧i=j+1)

βi

+
∑nserv

k=1 Ck,i(1− Φk)fj>c−1Φk
i−j−1 f (i=j+1)

∨(j≥c−1)

]
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This describes the probability flux at any queue length. We now describe
the formulation of this expression, progressively introducing the terms. We see
that the queue can accommodate geometrically batched occurrences of both
arrivals and processing completions. Formally, we have transitions within the
queue whose vertical component (increasing or decreasing queue length) has
size s with probability (1 − θ)θs−1, and the horizontal component is zero. As
with the rates Λ and M , we write the batch parameters in matrix form, where
Θ is the diagonal matrix of geometric arrival batch size parameters (θ) and Φ
similarly for service batch size parameters (φ).

Each processor’s Poisson completion intervals can be given by a matrix M ,
with batching described by the matrix Φ. To incorporate multiple homogeneous
processors, the processing rate matrix M is replaced by Cj = min(j, c)M at
queue length j, with the batch matrix Φ remaining unchanged. If all processors
are busy, then service batches can clear jobs down to level c − 1 inclusive; i.e.
there is unbounded batch flow to levels c and above, and bounded (truncated)
batch flow to c− 1. If any processors are idle, then the processing batch size is
exactly 1, as there are no jobs in the waiting room, and a processor can only
clear its own job in service.

We use a switching term f(P ) which is equal to 1 if predicate P is true, and
zero otherwise. The switch fj>c−1 bounds downward flow at level c − 1. The
term f(i=j+1)∨(j≥c−1) selects valid flows, which are batches from anywhere in
the waiting room to just below c, or single jobs from a single processor.

We treat breakdowns and repairs (in the sense of Mitrani and Chakka [14])
by allowing the number of processors to vary from 0 to c across the modulation
phases. Thus the number of phases associated with the processing description
is N = c + 1. This is introduced into the left-hand side expression by replac-
ing references to c with the vector (c1, . . . , cN ) of the numbers of operational
processors in each modulation state.

The switching term FP (m) is a diagonal matrix of values whose ith diagonal
element is fP (i). We define the result of raising a square matrix A to the power
B with the same dimensions to be a similar matrix of elements a

bi,j

i,j . (In fact all
matrices operated upon here are diagonal.) Also, the mth element of Cj is now
min(j, cm)µ, where cm = (m − 1). We combine breakdowns and repairs with
modulated arrivals by the standard technique of taking the Kronecker product
of the independent modulation matrices.

Rate matrices with off diagonal elements describe simultaneous queue length
changes with queue modulation phase transitions. These are used to create
phase-type and MAP processes.

Negative customers create additional probability flux downward in the lat-
tice, corresponding to queue length decreases due to customer loss. This is used
to model network phenomena such as losses and to approximate load balancing.
As well as specifying the Poisson rate and batch size parameters in matrices K
and R respectively, a killing mode has to be chosen. We consider three modes:
tv or “tail vulnerable” removes a job from the tail of the queue even if it is in
service, ts or “tail safe” removes a job from the tail of the queue but not when
in service, and hp or “head per” which removes a customer from the head of the
queue (in service) at an independent but equal rate per processor, leading to a
lower loss rate when some processors are inactive.

Killing mode tv is the simplest, as it can kill any job in or out of service,
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and the batches are bounded only at level zero. Mode ts is bounded at level c,
as it cannot kill any job in service. Mode hp causes flux identical to processing
completions.

Queue length κb is the lowest level reachable by killing, i.e. κb
m = cmfts +

(cm − 1)fhp , at which batch killing is truncated. We define the mth diagonal
element of the killing factor matrix at level (queue length) j, βj = min(j, cm)/
maxm(cm) for hp killing and cm/ maxm(cm) otherwise.

To add multiple processes, we augment the arrival term to reflect a sum of
streams, for example narr is the number of arrival streams. This introduction
of sums of streams is also performed for processing completions and negative
customers to create a more general balance equation.

Queue length dependency can be approximated by defining the component
processes according to bands of queue length. Every term in the flux expression
can be indexed according to its band to select the appropriate entries. Note that
this includes Q the modulator. Each such band exhibits its own repeating region
with a distinct eigensystem. The simplest way to add this to the expression for
the balance equation is to modify the term indices to include the queue length
from which their probability flux is sourced. In the following analysis, we also
allow for the presence of finite jumps in the system.

5 Localization

Geometrically distributed customer batch sizes are unconstrained in size, so
the matrix recurrence relation in the balance equations for a queue using them
can be of infinite order. To enable the solution of such problems using spec-
tral expansion or matrix geometric methods, we introduce a novel variant of
an algorithm introduced in [20] that automatically transforms the problem into
an equivalent whose repeating region is described by finite probability flux bal-
ance equations. We refer to these transformed equations as localized equivalent
balance equations.

Localization of these equations is achieved using a similar trick to that em-
ployed in finding the value of an infinite geometric series, namely taking the
difference between the series itself and a copy scaled by the geometric factor.
Terms differing by the appropriate factor are found in the coefficients of prob-
ability flux terms for neighbouring queue lengths. The range of resulting equa-
tions arises from the pollution of the otherwise geometric series – which are
eliminated – by any constant terms around the focus of the balance equation
(such as the modulator’s instantaneous generator equation), and the innermost
terms of the series persisting from previous eliminations.

When we eliminate the terms arising from other bands, the geometric series
in the coefficients of the vector SOPs begin at a given queue length, with the
result that there are no remnants. Thus, it is not necessary to write down
terms from a neighbouring band, except in balance equations which will span a
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boundary between bands when localized.

pj−1 = . . .vj−3[F2 + Λ(I −Θ)Θ]
+ vj−2[F1 + Λ(I −Θ)]
+ vj−1[L]
+ vj [B1]
+ vj+1[B2] . . .

pj = . . .vj−3[F3 + Λ(I −Θ)Θ2]
+ vj−2[F2 + Λ(I −Θ)Θ]
+ vj−1[F1 + Λ(I −Θ)]
+ vj [L]
+ vj+1[B1] . . .

pj−1Θ− pj = . . .vj−3[F2Θ− F3]
+ vj−2[F1Θ− F2]
+ vj−1[LΘ− F1 − Λ(I −Θ)]
+ vj [B1Θ− L]
+ vj+1[B2Θ−B1]

Note that the geometric terms have disappeared, leaving only the constant terms
unrelated to the geometric series of Θ scaled and mixed. We now show the
removal of processing completion batched from a separate band at higher queue
lengths. We simplify the presentation by using the case where we have only
unit constant transitions – or one batched process already localized in either
direction – other than the batches from the band. These are un-indexed for
clarity.

pj =vj−1[F ] + vj [L] + vj+1[B]

. . . + vj+k[M(I − Φ)Φk−1]

+ vj+k+1[M(I − Φ)Φk] . . .
pj+1 =vj [F ] + vj+1[L] + vj+2[B]

. . . + vj+k[M(I − Φ)Φk−2]

+ vj+k+1[M(I − Φ)Φk−1] . . .
pj − p(j1)Φ =vj−1[F ] + vj [L− FΦ] + vj+1[B − LΦ]

+ vj+2[−BΦ] with no peripheral terms

This transformation is simple matrix arithmetic. Each such transformation
employing a pair of flux descriptors removes a single geometric series. Therefore
to remove a number of geometric series, we perform this elimination a number of
times. Since each flux descriptor contributing to an elimination may itself be the
result of one or more eliminations, this process is recursive. This is clearly seen
in [20], in which we provide a recursive operator which interrogates the algebraic
flux descriptor to generate elimination factors. We have since realised that the
problem is rather simpler if we construct the algebraic expressions ourselves,
since we know the Θ, Φ and other such geometric terms a priori. In essence,
we use the form pj−1Θ − pj to eliminate upward flux from a flux expression
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at queue length j, and the form pj − pj+1Φ to eliminate downward flux terms.
We only differentiate between the geometric terms Φ as a visual reminder of
the direction of the flux involved. Recall that these flux expressions are to be
equated to zero in the solution to the queue, so these transformations are full
rank as described because it is a simple column operation (recalling that we are
working with left vectors).

Aside: it is interesting to note that the “rate” terms from exogenous band
geometric terms do not appear in the localized expressions. However, the rate
terms from all the equations are linked by their appearance in the use of explicit
balance equations at boundaries between bands.

5.1 Parameters of the localization

In this glossary of definitions, an upward process increases queue length, and
a downward process decreases it. For all diagonal matrix terms, appending an
additional subscript creates a reference to the corresponding diagonal element.

r is the number of bands in the queue above the processor filling region, which
we refer to as the queue resolution. Bands are thus indexed on b, 0 <= b <= r.

kb, is the queue length at the top of band b. Bands are numbered from zero.
The zeroth band is by our convention the processor filling region.

db is the number of infinite geometric series associated with downward pro-
cesses defined by band b.

ub is the number of infinite geometric series associated with upward processes
defined by band b.

Φ(b)
p , 1 <= p <= db are the geometric term matrices for downward processes

defined by band b. These may or may not have been packed as described later.
Θ(b)

p , 1 <= p <= ub are the geometric term matrices for upward processes
defined by band b. These may or may not have been packed as described later.

u(l)
b is the maximum range of finite local upward transitions defined in band

b. It is essential to remember that these will cross band boundaries.
d(l)

b is the maximum range of finite local downward transitions defined in
band b. Again, these will also cross band boundaries.

u(∗)
b is the total number of geometric series defined in independent matrices

(which may or may not have been packed as defined below) in band b and from
all lower bands which land in band b. This excludes finite local transitions.

d(∗)
b is the total number of geometric series defined in independent matrices

(which may or may not have been packed as defined below) in band b and from
all higher bands which land in band b. This excludes finite local transitions.

These terms provide the necessary measurement to correctly select the num-
ber of balance equations required in the elimination process, the number of
coefficients to enumerate and process, and hence to predict the range of queue
lenths involved in the resulting localized balance equation, and the number of
associated eigenvalues in the solution.

5.2 Preparing for localization

We outline the procedure for mechanically generating a balance equation for
queue length j. Begin by populating an array A with the matrix coefficients
of vj−x through vj+y which appear in the unlocalized probability flux vector
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expressions for queue lengths j − u through j + d. x + 1 + y is therefore the
range of queue lengths covered by the transformed matrix balance equation due
to locally generated and exogenously generated infinite geometric series, and
local finite jumps. From the terms detailed above, x = u∗b − f(j = kb−1 + 1)ub,
y = d∗b − f(j = kb)db and u = x + u(l), d = y + dl, where f(P ) is a switching
term of the same form used in the defintion of the balance equations, equal to
one if P is true, and zero otherwise.

We suggest that the columns pertain to a given balance equation so that
they resemble the example eliminations we provide above. This means that the
array resembles a rectangular excerpt from the instantaneous generator matrix
for a whole queue commonly depicted in works relating to the matrix analytic
approach. So, Ai,j is the coefficient of vi in the raw balance equation for queue
length j.

This procedure does not explicitly acknowledge the presence of processes
defined on bands of queue length. These are encoded entirely in the balance
equation expression - for example that given earlier for pj - and the calculation
of a number of terms, including the position and extent of the elimination win-
dow (the array we populate with coefficients), and the provision of an array of
diagonal matrices signifying the geometric terms.

5.3 Compaction of problem parameters

This elimination process allows for a system in which all the diagonal elements
of the geometric terms are non-zero. Any zero values reduce the span of the
equations in the corresponding modulation state, and reduce the number of
eigenvalues in the solution. If any pair of values in a given modulation state in
seperate geometric terms in a given direction (increasing or decreasing queue
length) is identical, this also reduces the span of the equation and hence number
of associated eigenvalues in the system, since the elimination of one also knocks
out the other. If there is a reduction of the number of independent non-zero
terms in all modulations states, then the localized balance equation will involve
fewer queue lengths over all. To simplify the analysis of the system in terms of
number of eigenvalues and the range of the balance equations, we compact the
representation of the balance equation.

Create fresh copies of all the batch distribution matrices in groups by band
of queue lengths. We are going to seperate the definition of the general balance
equation from the description of the localization. We use seperate copies of the
batch distribution terms. This is of course potentially spacially inefficient, but
it makes the process simpler in implementation, and simpler to understand.

If the queue we wish to formulate uses a number of modulated processes
selected by an environmental modulator (for example BMAP arrivals and PH
type processing), the rate matrices for each will have a number of zero rows.
The associated geometric batch distribution parameter matrices therefore also
have these zero rows.

The copies of the matrices to be used in the elimination process will either
be numerical or symbolic. If they are symbolic, then any elements known to
be non-zero should be references to the corresponding elements in the original
matrix.

For each band, therefore, we have a list of matrices describing the geometric
terms generated by processes in that band. To enable convenient prediction
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of the number of eiegenvalues in the system, we need to know what the per-
modulation-state range of the localized balance equations will be. To find this,
we compact the set of distribution matrices.

The simplest view of this is, for each flux direction seperately, to write the
diagonals of each matrix into successive columns of a array. We then shift
each element of that array to the leftmost column possible. This may leave
some all-zero columns. Each number of non-zero elements in row m of the
array produced for upward transitions gives the value of ub,m. We count the
corresponding elements in the array for downward processes to give db,m.

5.4 Localization procedure

The simplest implementation results from removing all the series in one di-
rection, then removing those from the other. Here we remove all backward
geometric processes, followed by the forward. In C-like pseudocode:

// number of columns in the matrix is N
N = num_up_terms + 1 + num_down_terms;

// P and T are the lists of
// down and up geometric terms

// remove downward processes
for(t=1; t<num_down_terms; t++ ) // loop t geometric terms

for(j=t; i<N; i++ ) // loop j columns
for(i=0; i<num_coefficients; i++) // loop i coefficients

set( A[i,j], sub( A[i,j], prod( A[i,j-1],P[t])));
// this is a matrix operation

// remove upward processes
for(t=1; t<num_up_terms; t++ ) // loop t geometric terms

for(j=N-t-1; i>=num_down_terms; i-- ) // loop j BACK columns
for(i=0; i<num_coefficients; i++) // loop i terms

set( A[i,j], sub( A[i,j], prod( A[i,j+1],T[t])));
// this is a matrix operation

Recall that each element of A, P and T is an array, so matrix assign (set),
subtraction (sub) and multiplication (mult) functions are required. At the end
of this procedure, the dth column (indexed from 0) contains holds the matrix
coefficients of the localized balance equation.

6 A novel interpretation of batch distribution
parameters

Fackerell’s thesis [9] gives a clear introduction to the use of matrix exponential
distributions. Éltető, Rácz and Telek describe an important opportunity to gen-
erate feasible, meaningful distributions by unconstrained optimization through
identification of a locus of minimal coefficient of variance distributions [8]. These
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arise from examining the eigenvalues of the system, which can result in expo-
nential, modal and oscillatory terms. The essential constraint is that all prob-
abilities must be positive. We have independently noted that it is possible to
construct what could be viewed as a discrete analogue of the same component
terms using the formulation of the geometrically batched queue.
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Figure 1: Left: a modal component shown as rate against jump size i for λ1 = 2,
θ1 = 0.9, λ2 = 1.999, θ2 = 0.89. Right: a sinusoidal oscillatory component shown
as rate against jump size i with λ = 1 in for the conjugate batch processes, with
θ = 0.99eπ

√
−1/16 in one, and θ∗ in the other, and an additional real geometric term

2 ∗ 0.99i from a normal CPP process to give a positive result

A single geometric term has been demonstrated to be valuable in its own
right (e.g. amongst others [1]). This is formed by a positive “rate” and a
positive “decay”. These are commonly selected by a modulation process, so
are held in matrices. Using these terms we construct the geometrically batched
queues as originally conceived, with positive and negative arrivals and processing
completions all geometrically batched, and Markov modulated.

We have shown how a queue with real, positive transaction size distributions
expressed as a superpostion of geometric terms can be solved using a novel trans-
formation approach followed by essentially standard solution methods. We have
introduced an additional aspect of novelty in the formulation of the geometric
terms. Let us emphasize that the transformation process involves simple full
rank manipulations which preserve the meaning of the system. This allows us
to experiment freely with the geometric terms, so long as the sum is positive
and real.

6.1 Modal and oscillatory components

With this freedom of expression, we can explore constructions with apparently
unreasonable rates and batch size distribution values. We first introduce a modal
term constructed of two geometric terms, one of which comprises a positive
“rate” and a positive “decay”, and the other a negative “rate” of smaller absolute
magnitude than the first, and a positive “decay” of smaller magnitude than the
first.

ratei = λ1θ
i
1 + λ2θ

i
2, λ2 = −αλ1, α < 1, θ2 = βθ1, β < 1

These can be mixed and matched to form distributions with a number of modes.
There is also the opportunity for an oscillatory component formed by a pair of
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complex conjugate batch size “decays” associated with identical transaction
rates, such that the complex components cancel out.

ratei = λ((θ)i + (θ∗)i, Im(θ) "= 0, |θ| < 1

These are visually comparable to the graphs in [8], with the exception that
the abcissa here is discrete. The phase and frequency of the oscillatory term
may be freely modified. Phase is most simply modified by adding a constant
offset to the power of the complex geometric term. This preserves the necessary
relationship (a constant multiplicative factor) between balance equations at dif-
ferent queue lengths for the elimination procedure. Note that we explicity show
the square root of minus one. The commonest name of i for this would clutter
the namespace of the present work to no benefit - as soon as these oscillatory
terms are recognized, we simply include a complex conjugate pair of processes,
and need not consider the complex component explicitly.

These discrete geometric, modal and oscillatory components can be freely
mixed, so long as the result is entirely positive. This means that there must
be at least one either geometric or modal component. In initial experiments,
it may be worth finding further suitable constraints in a similar sense to that
espoused by Éltető et al for the continuous case in the matrix exponential.

We are currently exploring ensuring positivity by having one of the geomet-
ric terms specifically set to ensure the distribution is strictly positive, i.e. it
is responsive to the evolving estimate, rather than being driven as part of the
search, acting as a conpensating term. This leads to shocks in the error term
during convergence on distributions which have more than one minimum at or
close to zero, since this incurs discontinuities in the derivatives of the compen-
sation term. Optimization of such a fit in both the discrete and continuous case
is an interesting research topic.

7 Solution

The equilibrium solution for the queue is found by setting up a matrix equation
which expresses all the necessary explicit balance equations and the normal-
ization term. These are expressed in terms of the eiegensystems of the bands
and any explicit SOP vectors. This is most easily built progressively by looping
through the processor filling region, then through band boundaries, and the
full queue if it is finite. The resulting system will be non-square due to the
normalization. It is squared by either removing an equation, or adding it to
another.

In the transformed system, we find that the number of eigenvalues M =
nup + ndown, where nup is the number of distinct, geometrically batched up-
ward transitions (customer arrivals) and ndown similarly the number of distinct,
geometrically batched downward transitions (service completions or customer
removal via negative customers) summed over modulation states.

Chakka’s solution mechanism described in [1] finds the forward and reverse
eigensystems for the repeating region of the queue provided. It is not necessary
to use two separate eigensystems when solving these queues, since the SOP
vectors at the interface between the repeating region and a boundary may be
represented explicitly in the set of equations used to finally solve the queue.
Chakka aims to find the eigenvalues less than one in each process. However,
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identification of the largest eigenvalue is particularly efficient. It may therefore
be advantageous to use his approach of separating the processes, but solving for
the maximum eigenvalues. This contrasts with the matrix geometric approach,
in which a matrix embodying the smallest eigenvalues is found. Focussing on the
larger eigenvalues also favours using explicit SOP vectors in the solution system
for queue lengths neighbouring a band boundary. For a succinct description of
use of the spectral expansion approach, we recommend Mitrani and Chakka’s
original work [12].

A matrix equation generated directly from the explicit balance equations
involving the coefficients of the eiegensystems of the bands in the queue, and
the normalization term is not square. The system is over specified because of the
homogeneity of the balance equations demands the addition of a normalization
term. This is corrected either by removing a column of the system (recalling that
we are using left vectors). We have discussed at length the relationships between
spectral expansion and matrix geometric methods previously [19], providing a
clear description of some limitations of each, and suggesting how they may be
addressed.

7.1 Explicit regions

In general, in the region 0 ≤ j ≤ c − 1, there is no repetitive structure in the
balance equations that can be exploited. We therefore represent the SOP vectors
for these levels explicitly as vj . To constrain these SOP vectors we generate the
localized balance equations using the method in section 5 at the corresponding
levels 0, . . . , c− 1 to remove peripheral geometric processing completion terms.

For each modulation state m, the Kolmogorov equations just above the
processing region, c ≤ j ≤ c + um, and in a finite queue or one with bands, the
region just below the top of the queue or particular band, L− dm ≤ j ≤ L, give
the boundary conditions linking the explicit and repeating regions. Localization
of balance equations operates as before, but the derived equations include a
mixture of explicit SOP vectors represented as vj (for 0 ≤ j ≤ εb− 1 and j = L
for finite queues) or using a suitable spectral expansion or matrix geometric
representation for all other levels j.

The eigensystems in seperate bands are distinct, and indeed the spectrum
size of each band can be different. These are joined correctly by ensuring that
the solution system includes explicit equations for u(∗)

b queue lengths below an
interface between bands b and b+1, and d(∗)

b+1 above it if the eigensystems solved
for include the kernels (this requires a forward and backward system in each).
However, it is far simpler to use explicit SOPs either side of the boundary and
use a single eiegensystem in each of the bands. This requires explicit equations
for an additional queue length either side of the interface.

It is clearly desirable to allow arrival rates to vary with queue length, as this
occurs naturally in a closed system. It may also be desirable to model a com-
putation system which increases processor rate (and hence power consumption)
only when a finite buffer is almost full. Banding of processing rates does not
create any additional fine structure in the balance equations of the main body
of the queue.

The highest band of queue lengths may be finite or infinite. If it is infinite,
then there is an increased likelihood that a matrix geometric/analytic represen-
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tation of the SOP vectors will be effective for that band [19]. This would neatly
complement the use of spectral expansion in the internal finite bands, which
motivated by accuracy arguments [19], with the potential for higher efficiency.
For example, in the queues used in [18], we used spectral expansion in both
bands as the queues are finite. That work does not include Markov modulation
- instead, it focuses on the effectiveness of banding by exploring a network in
which batch sizes are very large, effected by a process completion batch size
distribution parameter φ of 0.9.

8 Conclusion

This latest development in Markovian queue formulation provides the opportu-
nity to unify interarrival time distributions with a novel freedom in definition
of batch transaction size distributions, while maintaining exact solubility. The
formulation approach we have developed enables rapid prototyping of novel,
complex queues. This is applicable both to analytic work, by generating sym-
bolic balance equations in a suitable mathematical prototyping system such as
Mathematica, and to implementation in performability analysis software tools
where efficient numerical evaluation is key.

The formulation process is in essence arithmetic, comprising only matrix
multiplication and addition. The numerical implementation for a tool may
therefore straightforwardly represent the terms being manipulated as efficient
tree arithmetic structures, in which the queue’s parameters may be dereferenced.
Thus, any balance equations automatically generated at run-time in such a
software tool may be re-used for variant system conditions.

We have provided basic examples of building blocks for batch transaction
size distributions. Use of these terms will enable approximation of discrete
distributions such as those found in internet traffic packet sizes, for example by
taking a discrete cosine transform of the required distribution and implementing
the required terms with the oscillatory componenets provided.

Any continuous time, discrete state Markovian queue may now be augmented
by the addition of controlled batch transaction size distributions and approx-
imated queue length dependency. The opportunity to trade off solution com-
plexity (in terms of number of geometric terms, modulation states and bands)
against goodness of fit to target process descriptions enhances the class of queue-
ing models which can provide accurate solutions in practice.
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A System for Dynamic Server
Allocation in Application Server

Clusters

A.P. Chester J.W.J. Xue L. He S.A. Jarvis∗

Abstract

Application server clusters are often used to service high-throughput
web applications. In order to host more than a single application, an
organization will usually procure a separate cluster for each application.
Over time the utilization of the two clusters will vary, leading to variation
in the response times experienced by users of the applications.

Techniques that statically assign servers to each application prevent
the system from adapting to changes in the workload, and are thus suscep-
tible to providing unacceptable levels of service. This paper investigates
a system for allocating server resources to applications dynamically, thus
allowing applications to automatically adapt to variable workloads. Such
a scheme requires meticulous system monitoring, a method for switch-
ing application servers between server pools and a means of calculating
when a server switch should be made (balancing switching cost against
perceived benefits).

Experimentation is performed using such a switching system on a
Web application testbed hosting two applications across eight applica-
tion servers. The test bed is used to compare several theoretically derived
switching policies. The Average Flow switching policy is shown to pro-
vide the best policy, when considering the mean response times for this
application.

1 Introduction

Large e-business and e-commerce infrastructures often require multiple appli-
cations and systems. For each of these applications a separate resource must
be allocated. The allocation of resources is normally conducted at the design
phase of a project, through the process of capacity planning. In planning for the
capacity of a system it is important to have a minimal QoS, which should repre-
sent the lowest level of acceptable service for the system. A system architecture
is then developed to enable the application to support the QoS requirements.

It is possible to consider such an environment as a set of servers which
is manually partitioned into clusters, with each cluster dedicated to serving
requests for a specific application.
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Internet services are subject to enormous variation in demand, which in an
extreme case can lead to overloading. During overload conditions, the service’s
response time may grow to an unacceptable level, and exhausting the resources
in this way may cause the service to behave erratically or even crash [18]. Due
to the huge variation in demand, it is difficult to predict the workload level at a
certain point in time. Thus, allocating a fixed number of servers is insufficient for
one application when the workload level is high, whereas it is wasted resource for
the remaining applications while the workload is light. Therefore, it is desirable
that a hosting centre switch servers between applications to deal with workload
variation over time.

Initial research in the area of dynamic server allocation has proven to be
mostly theoretical, with results being provided through simulation [14]. The
motivation for this work is to examine the potential for dynamic server allocation
in real-world application hosting environments.

The specific contributions of this paper are:

• To report on the development of a real-world testbed for evaluating tech-
niques for dynamically allocating servers to applications;

• To implement three server switching policies which have been theoretically
derived;

• To evaluate the three implemented policies within a practical setting, and
report on the pros and cons of each.

The remainder of this paper is organized as follows: Section 2 reports on
related work, describing the application environments and theoretically derived
switching policies. Section 3 gives an overview of the system architecture and
describes the performance characteristics of an application server. Section 4 de-
scribes the process of switching servers between applications. Section 5 provides
details of the experimental parameters and demonstrates the results obtained
from the system. In section 6 we draw our conclusions from the results and
describe the further work that we will be undertaking based on our findings.

2 Related Work

Performance optimization for single application server architectures have been
extensively studied [4, 5, 7, 8, 10, 11, 13, 17, 18]. [4, 8, 13] focus on request
scheduling strategies for performance optimization. In [11], the authors use
priority queues to offer differentiated services to different classes of request to
optimize company revenue. They assign different priorities to different requests
based on their importance. [10] studies the methods for maximising profits
of the best-effort requests and the QoS-demanding requests in a web farm,
however, they assume static workload arrival rate in the paper. Work in [7,
17] use provisioning techniques to achieve Service Level Agreements (SLA).
This research uses analytical models to analyse system capacity and allocate
resources in response to workload changes to obtain guaranteed performance.
Other work in [5, 18] use admission control schemes to deal with overloading
and achieve acceptable performance metrics. [5] uses session-based admission
control to avoid loss of long sessions in web applications and guarantee QoS of
all requests, independent of a session length. [18] presents a set of techniques for
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managing overloading in complex, dynamic Internet services and is evaluated
using a complex web-based email service. The work in this paper focus on the
scenario where multiple applications are running simultaneously in an Internet
hosting centre.

Recent work [9, 12] also studies performance optimization for multiple ap-
plications in Internet service hosting centres, where servers are partitioned into
several logical pools and each logical pool serves a specific application. They
address the server switching issue by allowing servers to be switched between
pools dynamically. [12, 14] consider different holding costs for different classes
of requests, and try to mininise the total cost by solving a dynamic program-
ming equation. The authors in [9] define a revenue function and use M/M/m
queues to derive performance metrics in both pools and try to maximise the
total revenue.

The work in this paper is different from [9, 12, 14] in the following respects:
an actual test-bed is used in our evaluations, and thus (i) the application is
not synthetic, (ii) the supporting infrastructure demonstrates the subtleties of a
real-world platform, and (iii) the switching policies are implemented, feed actual
system parameters, and evaluated.

3 System Overview

In this paper we consider an environment consisting of multiple applications
which is deployed across a set of servers. Each of the applications considered
has an identical system architecture. Modern Web application infrastructures
are based around clustered, multi-tiered architectures. Figure 1 shows mul-
tiple hosted Web applications based upon the “best possible” architecture as
described in [16].

The first tier in the architecture is the presentation tier. This comprises
the client-facing web servers that are used to host static content and route
requests to an available application server. The application tier is comprised of a
static allocation of application servers which process dynamic requests from the
clients, using the data persistence tier as appropriate. The data persistence tier
is normally comprised of a Relational DataBase Management System (RDBMS)
or a legacy system which is used for the purpose of permanent data storage.

In the case of a single application it is common for the presentation tier to
schedule tasks across a dedicated cluster of application server machines. Strate-
gies for request scheduling in both commercial and open-source products are
generally variations on the Weighted Round Robin (WRR) strategy. The WRR
approach allows for different proportions of requests to be dispatched to different
application servers and, in so doing, allows some degree of support for hetero-
geneous server environments by allocating a higher proportion of the workload
to application servers with more capacity.

Applications that require a state to be maintained throughout a user session
present a significant problem for WRR strategies, as multiple requests may
not be redirected to the same server. To this end several strategies have been
developed to handle this scenario. Session affinity ensures that subsequent
requests are all processed by the same application server, thus ensuring that
state is maintained throughout a user session. Drawbacks to this approach are
discussed in [8] and include severe load imbalances across the application cluster
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due to the unknown duration of a request at the time of dispatching it to the
application server, and a lack of session failover due to the single application
server providing a single point of failure to the session. It is also possible for
the client to store the state of the session, resubmitting it with each request.
Using this approach any available application server is able to process the user’s
request. Similarly the data persistence tier may be used to store session data
which also enables all application servers to service all requests, however this
comes at the expense of increased database server/cluster utilization. These
approaches are evaluated in [3]. In this paper user session data is stored on the
application server that processes the initial request. Further requests are then
forwarded to the same server for processing.

The multiple application environment we consider is captured by figure 1.
The diagram represents the architecture for n separate applications. The main
difference from the single application architecture is the conceptual view of the
set of application servers. In our multiple application environment any of the
servers available may be allocated to any of the applications either statically
or dynamically. In this paper we are concerned with the allocation of servers
at the application tier. Each application requires a dedicated presentation and
data persistence tier.

Figure 1: Multiple application architecture.

3.1 Server Performance

In [6] it is demonstrated that the throughput of an application server is linked
to the number of concurrent users. While a system is under a light load with
few concurrent users, the throughput of the server can increase in a near linear
fashion as there is little contention for resources. As the number of concurrent
users increases, the contention for system resources increases, which in turn
causes the rise in throughput to decrease. The point at which the addition of
further clients does not result in an increase in throughput is the saturation
point, Tmax.

From this it would follow that for a cluster of n application servers, the
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maximum theoretical throughput of the cluster would be ΣTmax for a hetero-
geneous cluster. This may be simplified to nTmax for a cluster of homogenous
servers. These theoretical throughputs are rarely achieved in practice due to the
additional overheads of scheduling and redirecting requests across the cluster.

4 Server Switching

If we consider that each application hosted across the set of servers provides a
service to the business (depending on the SLAs), some of the hosted applications
are more important than others in terms of revenue contribution to the service
provider.

Most Internet applications are subject to enormous variations in workload
demand. During a special event, the visits to some on-line news applications
will increase dramatically, the ratio of peak load over light load can therefore be
considerable. System overloading can cause exceptionally long response times
for requests or even errors, caused by the timing out of client requests and
connections dropped by the overloaded application. At the same time, the
throughput of the system would decrease significantly [6].

Therefore, it is desirable to switch servers from a lightly loaded application
to a higher loaded application in response to workload change. In such cases, it
is important to balance the benefits of moving a server to an application against
the negative effects on the reduced pool and the switching cost.

The mechanism for switching servers, and the costs of the switch are dis-
cussed in section 4.1. The switching policies implemented within this paper are
given in section 4.2.

4.1 The Switching Process

Several different scenarios for server switching are presented in the literature
[9, 14]. In [9] it is proposed that the set of servers are shared amongst a single
application, which is partitioned according to different levels of QoS. In this case,
the simplest approach to reallocating a server would be remove it from an entry
point serving one request stream, and add it to the entry point for the assigned
pool. This negates the need to undeploy and redeploy the application, which
provides a considerable reduction in switching cost. The switching process for
this scenario is given in algorithm 1.

There is a cost associated with switching a server from one application to
another. The cost of a switch is derived from the duration of the switch, and can
be considered as the degradation of the throughput in the environment whilst
a server is unable to service requests for any application as it switches.

4.2 Switching Policies

A switching policy is defined as an algorithm that when provided information
on the current state of the system makes a decision on moving to another state.
When doing this the policy must analyze the potential improvement in QoS
against the cost of performing the server switch. There are several examples of
switching policies in the literature [9, 14]. Some of these policies are executed as
a result of each arrival or departure of a request; while others are executed after
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Algorithm 1 Switching algorithm for single application QoS requirements
1: for Application Ai, in applications A1..n do
2: Let Si be servers required for Ai

3: Let ASi be an application server belonging to Ai

4: Let Wi be a Web Server belonging to Ai

5: while Si != 0 do
6: if Si > 0 then
7: for Am in Ai+1...n do
8: if Sm < 0 then
9: Stop Wm dispatching requests to ASi

10: Wait for pending requests to complete
11: Switch server from Am to Ai

12: Allow Wi to dispatch requests to ASi

13: end if
14: end for
15: else
16: for Am in Ai+1...n do
17: if Sm > 0 then
18: Stop Wi dispatching requests to ASi

19: Wait for pending requests to complete
20: Switch server from Ai to Am

21: Allow Wm to dispatch requests to ASi

22: end if
23: end for
24: end if
25: end while
26: end for

a fixed time period and use statistics gathered over a time window to inform
the switching decision. A policy may also consider request arrivals as being
on or off, which is dictated by any arrivals in a given time period. The work
presented in [14] describes four possible switching policies, three of which are
implemented in this paper:

• The Average Flow Heuristic uses information on the arrival and comple-
tion rates of requests for each application in order to make a switching
decision. This heuristic averages arrivals over the duration of the experi-
ment and does not consider the distinct on/off periods for each application.
Doing this requires that a weighted average arrival rate is calculated; this
is shown in algorithm 2. Algorithm 4 is then used with the calculated
average arrival rates.

• The On/Off Heuristic attempts to consider the “bursty” nature of requests
to each application. To do this it classifies each application’s requests as
being on or off, and switches servers accordingly. To account for the on
and off periods in the job streams, the arrival rate is calculated as in
algorithm 3; algorithm 4 is then used to calculate a new server allocation.

• The Window Heuristic uses statistics gathered over a sliding window of
time to calculate arrival and completion rates for each application within
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Algorithm 2 Calculating the reduced arrival rate for the Average Flow Heuris-
tic
Input: Arrival rate λ

Job stream on rate m
Job stream off rate n

Output: Average arrival rate λ′

return λ×m
m+n

Algorithm 3 Calculating the arrival rate for the On/Off Heuristic
Input: Arrival rate λ

Job stream on period m
Output: New Arrival rate λ′

if m = true then
return λ

else
return 0

end if

a time window. In so doing, the policy ignores the presence of any off
periods in the time window. This algorithm is shown in algorithm 6.

5 Experimental Platform

In this paper we present our investigations into the single application with mul-
tiple QoS requirements, as found in [9].

5.1 Experimental Platform

Our experimental platform is based on the architecture shown in figure 1. In
the presentation tier we use a custom Web server to dispatch requests onto the
application servers. The glassfish J2EE application server running on a Java
1.6 JVM was selected for the application runtime environment. The application
server was tuned in accordance with the manufacturer’s published guidelines to
improve performance [15]. For the data persistence tier the Oracle 10g relational
database system was chosen, which is representative of production systems that
one might find in the field.

The hardware for the Web servers consists of two dual Intel Xeon 2.0GHz
servers with 2GB of RAM. For the application servers, a server pool of eight
homogeneous servers is used. The servers all use dual Intel Xeon 2.0 GHz
processors and had 2GB RAM installed. They are connected via a 100 Mbps
ethernet network. The web servers for each application were comprised of the
same hardware. The database servers were all configured as dual Intel Xeon
3.0Ghz CPU servers with 2GB RAM and were connected to the network via a
gigabit ethernet connection.

The application used for the testing of the system was Daytrader [2], an
open-source version of IBM’s performance benchmark Trade. This application
was chosen as it is representative of a high throughput Web application. The
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Algorithm 4 Server Allocation Algorithm
Input: Current server allocation S1, S2

Arrival Rates, λ1, λ2

Completion Rates, µ1, µ2

Queue Lengths q1, q2

Switches in progress w1,2, w2,1

Switch Rate r1,2, r2,1

Job costs c1, c2

Switch costs sc1,2, sc2,1

Output: New server allocation, S′1, S
′
2

1: Let tc1, tc2 be total costs for each job queue
2: tc1, tc2 ← 0
3: Let bdc be best decision cost
4: bdc←∞
5: if µ1 = 0 and µ2 = 0 then
6: return error
7: end if
8: for s in S1 do
9: tc1 ← Call Algorithm 5 with parameters s, S,λ1, µ1, w2,1, r2,1, q1

10: tc2 ← Call Algorithm 5 with parameters s, S,λ2, µ2, w1,2, r1,2, q2

11: if (c1 × tc1 + c2 × tc2 + sc1,2 × s) < bdc then
12: S′1 ← −s
13: S′2 ← s
14: end if
15: end for
16: for s in S2 do
17: tc1 ← Call Algorithm 5 with parameters s, S,λ1, µ1, w2,1, r2,1, q1

18: tc2 ← Call Algorithm 5 with parameters s, S,λ2, µ2, w1,2, r1,2, q2

19: if (c1 × tc1 + c2 × tc2 + sc2,1 × s) < bdc then
20: S′1 ← s
21: S′2 ← −s
22: end if
23: end for
24: return S′1, S

′
2

work presented in [1] suggests adopting an exponential distribution with a mean
of seven seconds as a reasonable “think time” for the trade application.

To generate dynamic workloads a custom load generation system was devel-
oped. This allows specified load to be generated for predetermined durations,
which allowed us to monitor the reaction of the switching system to repeatable
changes in workload. All of the policies were subject to an identical workload.
The workload consisted of one thousand client sessions, which were initially
divided between the applications and were altered during the execution of the
experiment. This allowed us to observe the reaction of each policy under a
consistent environment. The workload is shown in table 1.

To host the switching system, an additional node was added to the architec-
ture in figure 1. This was done to ensure that the additional overheads of the
system were not added to any of the exiting system components.
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Algorithm 5 Total Cost Algorithm
Input: Switched servers s

Server Allocation S
Arrival rate λ
Completion rate µ
Switches in Progress wm,n

Switch rate rm,n

Queue Length q
Output: Total Cost, tc
1: if q > 0 then
2: if λ <S − s + wm,n × µ1 then
3: Let st be an array of size wm,n + 1
4: for i in wm,n do
5: sti ← 1

(wm,n−i)×rm,n

6: end for
7: stwm,n ←∞
8: tc1 = 0
9: Let vq be the virtual queue length

10: vq ← q
11: for j in wm,n + 1 do
12: if vq > 0 then
13: Let x be the rate at which the queue drains
14: x← vq + (λ− (S − s + j)× µ)× stj
15: if x ≥ 0 then
16: tc← tc + 0.5× (vq + x)× stj
17: vq ← x
18: else
19: tc← tc + 0.5× −vq

λ−(S−s+j)×µ×vq
20: vq ← 0
21: end if
22: end if
23: end for
24: else
25: tc←∞
26: end if
27: else
28: tc← 0
29: end if
30: return tc

Although the time taken to switch a server varies, and is in part dependent
on the queue of pending requests allocated to the server, we have found that
the average time taken to switch a server between pools is approximately 4
seconds1.

The switching interval is the time between executions of the switching policy.
In this experiment the switching interval selected was thirty seconds, as this

1The range of switching times obtained throughout the experiments ranged from 2 to 6.4
seconds.
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Algorithm 6 Window Policy Algorithm
Input: Current server allocation S1, S2;

Arrival Rates, λ1, λ2

Completion Rates, µ1, µ2

Job costs, c1, c2

Output: New server allocation, S′1, S
′
2

1: Let bdc be best decision cost
2: bdc←∞
3: n1 = (s1+s2)×c1

c1,c2

4: n2 = (s1 + s2)− n1

5: for i in S1 + S2 do
6: ρ1 = λ1

i×µ1

7: ρ2 = λ2
(S1+S2−i)×µ2

8: if ρ1 < 1 and ρ2 < 1 then
9: Let c be cost of the switch

10: c = c1×ρ1
1−ρ1

+ c2×ρ2
1−ρ2

11: if c < bdc then
12: bdc← c
13: n1 = i
14: n2 = (S1 + S2)− i
15: end if
16: end if
17: end for
18: S′1 = n1 − S1

19: S′2 = n2 − S2

20: return S′1, S
′
2

allowed a complete switch of all servers from one pool to the other, if such
behavior was required by any of the switching policies.

In the experiments we configure the two applications with different costs to
represent the differences in QoS requirements. The job costs for our experiments
are considered to be the costs for holding a job. Such a definition allows a value
to be attached to a queue of waiting jobs. For our experiments a1 has a holding
cost 25% higher than that of a2, making jobs for a1 a higher priority than a2
as they are more expensive to hold.

Table 1: Application workload for all policies

Timestep
T1 T2 T3 T4 T5 T6 T7 T8

Duration (mins) 1 1 1 1 1 1 1 1

Clients Application 1 (a1) 800 800 600 600 400 400 200 200
Application 2 (a2) 200 200 400 400 600 600 800 800
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5.2 Results

The overhead of the system is measured by calculating the maximum throughput
of a single server directly, and then measuring the maximum throughput of
the server requests that are forwarded from the Web server. We measure the
throughput for each case at a variety of loads as shown in figure 2. It can be
observed that the throughput for the system is significantly higher than that
of the direct connections. The throughput curves for both connection types fit
closely with the typical performance curves seen in [6].

The response time for the direct requests increases dramatically after 100
clients, while the response time for the redirected requests remains constant.
The authors believe that this is due to connections between two fixed points
(the Web server and the application server) being cached at the Web server,
reducing startup costs for each connection.

Figure 2: Direct Server Throughput vs. Redirected Throughput

A baseline is provided by statically allocating four servers to each of the two
applications. The response time for the application workload shown in table 1,
over a period of eight minutes, is shown in figure 3. The response times for each
application at timestep 1 is high due to the application being freshly deployed.
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After deployment the application server and the JVM optimise the the program
to improve its performance. In the experiments, we have intentionally included
the warm-up time as when a server is switched it will be starting from a cold
state, and will take time to enter its steady state.

Figure 3: Response Times for Static Server Allocation

It can be seen in figure 3 that the response times for a1 decrease after
the first time period, and continue to decrease due to the decreasing workload
placed upon the application throughout the experiment (see table 1). The
response times for a2 are similar, however they are more erratic throughout the
experiment. Initially the response time for the application is lower than that of
a1 due to the reduced load. After two minutes the load on a2 is doubled, which
causes an increase in response time until the third minute. At this point, the
response times are again reduced, which is due to the optimizations made upon
the application by the JVM, in addition to the application server dynamically
adjusting its internal configuration. Examples of this dynamic application server
configuration include increasing the number of threads available in the database
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Table 2: Comparison of policy response time against static allocation

Mean response time (ms)
Static Average Flow On/Off Window

a1 51.58 48.67 (-5.64%) 53.13 (3.01%) 54.25 (5.18%)
a2 53.92 52.03 (-3.51%) 52.46 (-2.71%) 50.02 (-6.31%)

Table 3: Comparison of policy throughput against static allocation

Mean throughput (requests/second)
Static Average Flow On/Off Window

a1 76.55 76.19 (-0.47%) 76.26 (-0.38%) 75.79 (-0.99%)
a2 76.49 75.75 (-0.97%) 76.42 (-0.09%) 76.22 (-0.35%)

connection pool during periods of high load. This behavior is exhibited between
the fifth and sixth minutes in accordance with the changes in workload at this
time.

After finding a baseline from the static server allocation, each of the three
policies were measured against the same workload. The results of the three
policies are shown in figures 4,5 and 6. The figures are set out as follows: the
top graph represents the workloads for each application. The middle graph
shows the server allocation throughout the experiment and the bottom graph
displays the response time for each of the applications. The graphs are aligned
such that the time represented on the x-axis is the same on all three graphs.

The performance of the Average Flow policy is shown in figure 4. When
compared to the static allocation (see tables 2 and 3) the policy gives a 5.64%
improvement in response time for a1 and a 3.51% improvement for a2. The
Average Flow Policy is the only policy to give an improvement for both ap-
plications. In terms of mean throughput, the Average Flow policy decreased
throughput for a1 by 0.47% and a2 by 0.97%. The Average Flow policy per-
forms the fewest server switches of any of the policies. This has the effect of
making it the cheapest policy if we consider the cost of the switches as defined
in section 4.

The On/Off policy results are shown in figure 5. The On/Off policy increases
the response time for a1 by 3.01%, but it reduces the response time for a2 by
2.71%. The performance of this policy is therefore worse that the Average
Flow policy, as it increases the response time for a1, and decreases the response
time for a2 by a smaller amount. When compared to the Average Flow policy,
this policy improves the response times for a2 in the last two minutes of the
experiment as it switches a server sixty seconds earlier.

The Window policy (see figure 6) switched significantly more than the two
previous policies. The response times for the Window policy show both the
biggest increase for a1 and the largest decrease for a2. The policy returned to
an equal allocation of servers far more often than the other polices used here.

In terms of response time, all of the polices reduced the mean response time
for a2, which was subject to increasing load throughout the experiment. The
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Figure 4: Average Flow Policy Results

mean response times for a1 were increased by the On/Off and Window policies,
however the Average Flow policy decreased the mean response time.

When considering the mean throughput of each policy against the static
allocation it is unsurprising that the throughputs are lower as servers are unable

A System for Dynamic Server Allocation in Application Server Clusters 212

UKPEW 2008 – http://ukpew.org/



Figure 5: On/Off Policy Results

to process requests while they are being switched between pools. This inability
to service requests is considered as the cost of making a switch as stated in
section 4. It is worth noting however that in all cases the decrease in throughput
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Figure 6: Window Policy Results

is less than 1%. In a system where changes in load are less frequent or switching
intervals are longer, server switching would occur less frequently. In this case
the effects of switching on throughput would be reduced further.

If we consider the mean response time as our metric for QoS, the Average
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Table 4: Total switches performed by each policy

Policy Timestep Total Switches
T1 T2 T3 T4 T5 T6 T7 T8

Average Flow Policy 2 0 1 0 1 0 0 1 5
On/Off Policy 3 1 1 0 0 1 1 0 7
Window Policy 2 0 3 1 1 1 2 4 14

Flow policy presents itself as the best policy for our given application. It was
the only policy that reduced service times for both applications. In terms of the
number of server switches (see table 4) the Average Flow performed five server
switches; the On/Off policy performed seven server switches, and the Window
policy performed fourteen over the course of the experiment. When considering
the switching cost in terms of lost throughput, we can see that the Average
Flow policy is however the most expensive, with the On/Off policy reducing
throughput the least during the experiment.

6 Conclusion and Further Work

In this paper we have developed a switching system that is representative of a
real world commercial hosting environment. We have implemented three theo-
retically derived switching polices as found in [14]. After implementing the three
policies we have evaluated their respective performance within our testbed and
identified the best policy for our specific application given a specific example
workload.

There is a significant amount of research to be done in this area. In our
experiments we used a fixed switching interval of thirty seconds which was ap-
propriate for our experiments. This figure was derived through consideration of
the switching duration of the specific application that we used for our experi-
ments. Further investigations will focus on analyzing the switching duration.

The results for each policy shown here are derived from a fixed workload. In
the short term we plan to investigate a variety of workload patterns, and identify
policies which are most effective under specific workloads. The switching interval
(which was fixed for our experiments) will be analyzed in conjunction with the
workload patterns to consider its overall effect on the system.

In the longer term we will look to enhance the switching system by identi-
fying known workload patterns in an application’s workload trace and selecting
the most appropriate policy from our experimentation. The identification of
the workload patterns is also expected to determine the appropriate dynamic
switching interval, allowing the most effective switching interval to be selected
given known or predicted workload patterns.
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Distributed Duty-cycle Management for 
Dependable Wireless Sensor Networks 

 
Jin Wu and Zhili Sun* 

 
 

Abstract 
It is believed that the deployments of Wireless Sensor Network (WSN) 
have great long-term economic potential, ability to transform our lives, and 
pose many new system-building challenges. A typical application domain 
of WSN is by placing a vast number of multifunctional sensor nodes over a 
field to sense and collect surrounding environment data. Beside energy 
conservation concerns, another major challenge for its real deployments is 
its reliability issue, more precisely the sensing resolution (this being the 
main service quality we addressed in this paper). In many cases, 
redundancy of sensors is being made to provide higher sensing resolution 
when single sensing device is with lower ability. Certain coverage of 
sensors is required in order to guarantee the sensing data with acceptable 
degree-of-truth. However, since sensor nodes are mostly powered by 
batteries and required to remain in inactive state for the longest possible 
time duration due to save energy. Balancing the trade-off between energy-
efficiency and sensing quality is a rich area because sensor deaths and 
sensor replenishments make it difficult to specify the optimum number of 
sensors that should be activated and sending information at any given time. 
Through literature survey, we discover that current solutions toward this 
problem fell into some limitations in configurations or deployments. In this 
paper, we present a concept for improving the overall performance of the 
WSNs through local collaborations of neighbour nodes, and provide a 
more efficient duty-cycle management solution. A framework for 
distributed duty-cycle management is given, and a control algorithm is 
generated from the framework. Simulation shows that the new method 
does work in WSN environments, and gives good results. 
Keywords: Wireless Sensor Networks, Duty-cycle, Distributed, 
Resolution  

 

1 INTRODUCTION 
Recent advances in Micro-Electro-Mechanism Systems (MEMS), Wireless 

Communications, and Embedded Systems made it possible in manufacture cheap, small, 
and energy-efficient multifunctional sensors with the ability of sensing environments, 
processing data, and transmitting information. A sensor network can be formed by 
deploying hundreds and thousands of multifunctional sensors within the region of interest 
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to perform certain sensing and networking tasks. Sensor Networks have generated flurry of 
research activity because of variety of applications [1, 2]. Some of the applications 
envisioned for such networks include but are not limited to targets detection, object 
tracking, environment surveillance, intrusion detection, and etc. [3, 4]. Many of these 
applications involve large-scale sensor networks, where a large number of sensors are 
deployed in a vast geographical area, and operating simultaneously in separate 
geographical spots.  

 
WSNs are placed in the field to collect data of interest for applications. Then, the 

ability of data collection of the WSN directly affects the performance of applications. 
Service quality in WSN involves a wide verity of criteria. A special service quality 
parameter to mean the resolution of sensor networks is a unique parameter typically 
measures the performance for WSN in terms of the data gathering ability. Different from 
conventional communication networks that only provide the service of duplicating 
information in bits from one end of the network to the other end of the network, sensor 
networks involve the ability of data collection, whereby the collection ability also needs to 
be ensured. Reference [6, 7] directly defines QoS to mean sensor network resolution. 
Specifically, depending on the different stimuli present in the sensor network, it is defined 
as the optimum number of sensors sending information toward information-collecting 
sinks. This is a very important issue, because in any sensor network we want to 
accomplish two things: 1) maximize the lifetime of the sensor network by having sensors 
periodically power-down to conserve their battery energy, and 2) have enough sensors 
powered-up and sending packets toward the information sinks so that enough data is being 
collected when stimuli presents. Note that the information sinks need a certain amount of 
information gathered from the different sensors, but sensors in close proximity to each 
other allow many of those sensors to be powered-down.  

 
This is the management problem we address. A most straight forward solution to this 

problem is the static setting whereby the duty cycle of each sensor node is settled in a 
fixed way before its deployment. It is widely used approach for nodes’ periodically 
powered off in the WSN. However, the duty-cycle management is a rich research area 
because sensors are always placed in the sensing field in random fashions with 
redundancy. Sensor deaths (e.g., as a result of damage or battery failure) and sensor 
replenishments make it difficult to control the optimum number of sensors that should be 
activated and sensing the field at any given time [5, 6]. Therefore, adaptive mechanisms 
should be applied to allow the running state of the sensor nodes cope with the randomness 
brought by the uncertainties from the sensing field. This issue is firstly described in ref [6] 
and reputed as the QoS problem in WSN. Then, some improvements are given in ref [7, 
12]. However, a significant weak point for those solutions is that two assumptions are 
made where 1) broadcast channel exists for collection point to all nodes, and 2) sensor 
nodes are able to acknowledge the information for collection point even when it is 
powered off for energy saving. The above two assumptions are not supported by main-
stream sensor node equipments. In this paper we present a distributed control algorithm 
for duty-cycle management to improve the QoS of Wireless Sensor Networks. We 
consider the sensor network can operate under the following model. Sensor nodes are 
distributed across the sensing field and simultaneously operating. Each sensor nodes swap 
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within two states, active and sleep. Sensor node itself has to decide when in active (or 
sleep) state. A control algorithm runs on each sensor node to determine the operation state. 
The simulations show that the ‘borrowed’ well fits the reality of duty-cycle control in 
Wireless Sensor Networks. The reminder of this paper is organised as follows. Section 2 
gives the related works and model definitions for this research. Section 3 gives the concept 
of doing duty-cycle management in a distributed manner. Section 4 gives a detailed 
description of the control algorithm for duty cycle. Simulation and conclusions are given 
in Section 5 and Section 6. 
 

2 BACKGROUND 
The study of wireless sensor networks is still a burgeoning field, many aspects of 

sensor networks, such as routing, preservation of battery power, adaptive self-
configuration, etc., have already been studied in previous papers. Ref. [8] might be the 
earliest work to the present study as it actively probes the question of QoS that the base 
stations are receiving from the sensors. However, it defines QoS as total coverage in a 
static fashion. That is, it does not allow a data sink to dynamically alter the QoS it is 
receiving from the sensors, depending on varying circumstances.  

 
Reference [6] proposed a solution that uses the idea of allowing the base station to 

communicate QoS information to each of the sensors using a broadcast channel and then 
use the mathematical paradigm of the Gur Game to dynamically adjust to the optimum 
number of sensors. The result is a robust sensor network that allows the base station to 
dynamically adjust the number of sensors being activated, thereby controlling the 
resolution of QoS it is receives from the sensors, depending on varying circumstances. 
This research attracts some research attentions and some new papers [7, and 12] can be 
found in the literature to extend the idea. However, the limitation for this Gur Game based 
algorithm and its variations is that two unreasonable assumptions are given, where 1) a 
broadcast channel is needed from base station to all sensor nodes, and 2) Sensor nodes 
need to reply to the request from the base station even when it is in sleep state. These 
algorithms can hardly be deployed to real sensor works without a radically change.  

 
In this paper, Placement Model, Sensing Model, and Converge Measures are defined 

as follows, respectively. In the rest of this paper, a commonly used sensor placement 
model is applied. This model has been used by many researchers, e.g. in ref. [2]. Large 
number sensors are randomly placed over a two-dimensional geographical region. It is 
also assumed that the locations of sensors are uniformly and independently distributed in 
the region. Such a random initial deployment is desirable in scenarios where priori 
knowledge of the field is not available. Also, the random deployment can be the direct 
result of certain deployment strategies. Based on this assumption, the locations of sensors 
can be modelled by a stationary two-dimensional Poisson point process. Denote the 

density of the underlying Poisson point process as λ , which is measured by the number of 

sensors per unit area. The number of sensors located in a region A, N(A), follows a 

Poisson distribution of parameter Aλ , where A  represents the area of the region [2].  
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In this paper, for the sake of simplicity, the Boolean sensing model is being used. The 
Boolean sensing model has been widely used in many researches.  In the Boolean model, 
each sensor has a certain uniform sensing range, r. A sensor can only sense the 
environment and detect phenomenon within its sensing range. A location is said to be 
“covered” by a sensor if it lies within the sensor’s sensing range. The degree of coverage 
is defined by the coverage density. It is defined as, fc(p), the positive integer for sensors’ 
number by which a particular point p within the sensing field is covered with. The 
Coverage Density represents redundancy level of sensor deployment for a certain point in 
the detection area. Note that the definition of a location being covered depends on the 
specific sensing model under consideration. The Boolean sensing model is considered in 
this paper, where a location is covered if it is within the sensing area of a sensor. If there 
are n sensors got the ability to detect the event that takes place at the point p, then the 
value of fc(p), in terms of resolution, equals to n. Therefore, if there is an event takes place 
at the point p, basically, n sensors will be able to claim detection for this event. However, 
some sensors in the sensor network might face some problems in terms of miss detection 
and false detection, so the detection reported by sensors might not exactly equals to n. 
Detail performance of n will be discussed in Section 5.  
 

3 DISTRIBUTED DUTY-CYCLE MANAGEMENT CONCEPT 
As discussed in Section 1, most sensor network applications require service quality 

guarantees in terms of data resolutions, suggesting the need for redundancy in the sensing 
ability. However, the energy supplies for sensor nodes, in many cases, are not without 
limitations. So for the data sensing ability concerns, sensor nodes should remain in active 
state to collect environment data from the field, whereas sensor nodes are expected to 
periodically powered-off for the energy conservation concerns. A clear trade-off exists for 
every sensor nodes in the field, on one hand it should be activated to provide more sensing 
abilities; on the other hand, it should be kept in inactive state for longest possible time to 
save energy. So a mechanism needs to be proposed to balance the aforementioned 
requirements. Solutions toward such problem can be done in two different ways, proactive 
and reactive. A proactive solution means the sensor nodes will be configured with the 
duty-cycle parameter before its deployment. However in order to provide the parameter 
value, a complete set of knowledge, such as position of sensor nodes, sensing range, 
energy consumptions, etc. should be given. Such knowledge is hard to acquire in many 
cases, especially when the sensor nodes are randomly deployed in locations and sensor 
nodes will die out and replenish, there is no way acquire such information before its real 
deployment. So, the reactive solution is proposed by providing a mechanism that allows 
the sensor network to adapt to the environment In this solution, the duty-cycle parameter is 
set after its deployment, and might be reconfigured during the running process. There exist 
two approaches for the reactive solution, centralised and distributed. For centralised 
configuration, a computation device acting as server will collect knowledge related to the 
parameter setting, and then configure the sensor nodes in real-time.  Limitations for this 
approach are that sensor nodes are strictly resource intensive devices. Running a central 
configuration approach will bring additional resources in information transmissions and 
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computation.  

 
Figure 1. Concepts of Distributed Duty-cycle Management 

 
In this paper, we adopt a distributed reactive duty-cycle management mechanism. In 

this mechanism, sensor node probes surrounding environments and configures its duty-
cycle through greedy local decisions. A guideline is applied where the duty-cycle should 
be deceased when the probe detects enough similar sensor nodes is in active state, or vise 
verse. The concept can be given in Figure 1.  Replacing sensing ability can given by 
exchanging information with neighbour nodes. Membership function is given by 
applications. A simple example is given in the following section to explain the concept.  

 

4 DUTY-CYCLE MANAGEMENT ALGORITHM IN SENSOR 
NODES 

Suppose we have a collection of n sensor nodes, M1 through Mn, with unified sensing 
ability placed over a sensing field with area of S. Sensor nodes are placed and operating 
following the definition in Section 2. This section gives an example of the concept 
mentioned in Section 3. A detailed duty cycle management algorithm is given. For the 
sake of simplicity, it is assumed that all sensor nodes have similar hardware and software 
specifications and configurations, and they are placed over a flat screen in quite radio 
environment. As defined in Section 3, every node is running independently. In order to 
have every node periodically power-down to conserve its battery energy, sensor nodes 
need to compute what time to sleep and what time to wake up. For any node i, it is awake 
for the first time deployment, suppose the time for the hth sleep is tsleep

i|h, and the time for 
the hth wake up is tsleep

i|h. Then, the hth sleep interval can be represented as  

h

i

sleeph

i

wakeh

i

itvl ttt −=∆  

When in active state, the sensor node will emit a beacon signal through the radio channel 

for every beacont∆  as the heart beating. Without loss of generality, we can define 

RateZt beaconbeacon />>∆ ,  

where Zbeacon and Rate represent for the packet size of beacon and the transmission rate of 
radio channel. The beacon density, ni(t), measures the probability of receiving a beacon 
for node i at time t. Then, it can be easily discovered that the resolution of a event takes 

place at point x, Sx ⊂ , is  

 1)()(),( 2
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where R and r are the range for sensing and transmission respectively. Defined the 
minimum threshold of fc(x,t) as f’, then the minimum threshold of beacon density nx(t) can 
be represented as 

  

beacon

c

t

f

R

r
xn

∆

−
⋅=

1'
)()(' 2

      …(3) 

Based on the above analysis, it can be considered as when the incoming beacon 
probability is lower than n’(x), it means that the number of nodes that cover the point x are 
too small to provide certain degree of resolution, or vice versa. Therefore, the algorithm 
that controls the sleep interval can be given as follows.  

 
Figure 1. Duty-cycle Control Algorithm for QoS Control 

In the algorithm shown in Figure 1, tnow is current time, and the update_itvl is the time slot 

for update interval. )1,0(⊂α  is a parameter related to the stability of system.  

 

5 PERFORMANCE ANALYSIS 

Twake
i|0=0; 

Tsleep
i|0=0; 

n=1; 
if ((tnow-last_update)>update_itvl) 
{ 

if (((tnow-twake
i|n-1)/ tbeacon)*x)>Maxth 

{tsleep
i|n=tnow; 

twake
i|n=tnow+Max_sleep; 

}; 

if (((((tnow-twake
i|n-1)/ tbeacon)*x)<Maxth)&((((tnow-twake

i|n-1)/ tbeacon)*x)>Minth)) 

{tsleep
i|n=tnow; 

twake
i|n=tnow+ Max_sleep*((((tnow-twake

i|n-1)/ tbeacon)*x-Minth)/(Maxth-Minth)); 

}; 

if ((((tnow-twake
i|n-1)/ tbeacon)*x)<=Minth) 

{tsleep
i|n=+ ; 

twake
i|n=tnow; 

}; 
if tsleep

i|n<=tnow 
Set_wake(twake

i|n); 
x=0; 
n++; 

last_update tnow; 

Sleep; 
}; 
Minth=(r/R)2*(fc’-1); 
Maxth=Minth+a*(N-Minth); 
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The detailed analysis for the setting of this parameter is overloaded with details. 
However, the brief description of the running state of the algorithm can be given as 

follows. The relationship between fc(x,t) and itvlt∆ can be represented as follows. Suppose 

at time t, as a total of k nodes are able to sense the point x, u of which are in active state 
and others are in sleep state. If a steady state is reached, then 

activeitvl

active

activeitvl

itvl

tt

t
uk

tt

t
u

∆+∆

∆
⋅−=

∆+∆

∆
⋅ )(  …(4) 

where activet∆  is the active period when a sensor node once wakes up. From the equation 

(4), the beacon density can be represented as 

itvlactive tt

k
n

∆+∆
=         …(5) 

The equitation (5) plots as the dot line curve in Figure 2. The control algorithm is plotted 
as the real line curve  

 
Figure 2. The Operation State of Duty Cycle Management Algorithm 

 
When the beacon density of a sensor node is lower than the Minth, it means that the active 
node nearby is not enough, therefore the sleep interval should approach to 0 in order to 
bring up the resolution. When the beacon density is between the Minth and Maxth, it means 
enough sensing ability has been activated nearby, so the sleep interval can be linearly 
increase as the beacon density increases. When the beacon density is higher than the 
Maxth, it means that active sensor nodes nearly are far more than those required. Then, the 
sensor node should set with the longest sleep interval. The selection of Maxth depends on 
the loss parameter defined in Figure 2. The detailed set of Maxth is too much in details and 
exceeds the scope of this paper. A simple principle of setting Maxth is that higher value of 
Maxth will increase the stability of the control system but harm the convergence speed, and 
lower value of Maxth will do vice versa. In this paper, we set Maxth=2Minth.  
 

6 SIMULATIONS 
Since the experiment requires a large number of sensor nodes to test the affect of 

duty-cycle management, due to limitations in hardware, the Simulation is done on Matlab 

n 

Equilibrium 
Point 

Maxth Minth 

itvlt∆  
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in order to verify the control algorithm we proposed. A simple script is programmed to 
simulate the function of the algorithm. We compare the newly proposed algorithm with the 
well-known algorithm ‘GUR’ [6] in terms of steady-state performance, and standard 
deviation of coverage density. It is proofed through simulations that the newly proposed 
algorithm does provide substantial improvements in performances. The detailed settings of 
the simulation experiments are given as follows. There have 250 sensors in the 100*100 
sensing field with no sensor failures or renewals. All of them are networked with wireless 
channel without the consideration of routing problems. Each sensor is on active state as its 
initial state. R and r are set as 10 and 20 respectively. The desired resolution is set as 2. 
The simulation result for steady-state performance is as shown in Figure 3.  

 

 
Figure 3. Steady-state Performance. 

 
As one can see from Figure 3, both the Gur algorithm and the newly proposed algorithms 
are driving the resolution approaching the optimal value after a period of time.  
 
Then, we randomly select 50 nodes in the sensing field and measure their coverage density 
for every second. The deviation of those 50 nodes is given in as follows.  
 

 
Figure 4. Deviation Performance 

 
As observed in Figure 4, the deviation for the newly proposed algorithm is clearly lower 
than the Gur algorithm, whereby clear evidence is given that the distributed algorithm does 
givens a higher quality of performance in terms of fairness. From simulations, it shows 
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that the new control algorithm does functioning, and it is able to provide some sort of 
QoS. 

 

7 CONCLUSIONS 
Sensor networks are an exciting area with very real applications in the near future. 

Although many aspects of sensor networks have been studied before, quality of service 
(QoS) for sensor networks remains largely open. In this paper, we present an idea of using 
the duty-cycle control algorithm running on each sensor node to balance the trade off 
between energy consumption and resolution. It has been proved by simulation experiment 
that even without using such critical assumptions as ref [6] did, we still can control the 
Wireless Sensor Networks will to achieve some sort of QoS. It is believed that our newly 
proposed control method is effective, and has significant advantage against the method in 
literature. In this paper we have reported the results of a study over a very small portion of 
the design space, and in this area, much future work remains. 
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Validation of Large Zoned RAID Systems
Abigail S. Lebrecht Nicholas J. Dingle William J. Knottenbelt ∗

Abstract

Building on our prior work in [8], we present an improved model for for large
partial stripe following full stripe writes in RAID 5. This was necessary because
we observed that our previous model tended to underestimate measured results.
To date, we have only validated these models against RAID systems with at most
four disks. Here we validate our improved model, and also our existing models
for other read and write configurations, against measurements taken from an eight
disk RAID array.

1 Introduction
Choice of RAID level can critically affect the performance delivered by a storage sys-
tem. Therefore the ability to predict RAID performance for RAID systems of different
sizes and configurations is crucial. Modern Service Level Agreements require effec-
tive performance predictions must provide the ability to reason not only about mean
response times, but also higher moments and percentiles of response time.

Previous RAID models [4, 7, 11, 16, 17] approximate only the mean response time
of the system. All RAID models that we develop approximate the full response time
distribution, from which moments and percentiles can be calculated. In [9], we intro-
duced analytical queueing network models of RAID 01 and 5, the two most commonly
used RAID levels. We extended these models in [8] through the use of a multiclass
queueing network to allow heterogeneous workload streams of read and write requests.
In both cases, we validated these models against device measurements from a real-life
RAID system. This demonstrated the accuracy of our models and also suggested some
areas in which they could be more representative.

In this paper, we present improvements to our existing RAID 5 models for those
cases where large partial stripe writes follow one or more full stripe writes. We demon-
strate the accuracy of this model and our other models [9, 8] by validating them against
a real eight disk RAID system. This is an improvement over [9], where RAID 01 was
only validated for one size of request (2 blocks) under the same load on a 4 disk array.
Furthermore, constraints of validating on a four disk array meant that there was only
one validation for each size of RAID 5 write request (small partial, large partial and
full-stripe). On an eight disk array there are three different configurations representing
each of small and large partial stripe writes.

In [8] the model was extended to allow mixed streams of read and write requests.
Specifically we studied the cases of a request stream made up of the same amount of
read and write requests, and weighted in either direction with proportions of 75% and
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25% for each. We also studied the four disk array under different loads and for a wide
range of request sizes for all types of arrival streams and observed certain trends that we
discussed in that paper. By carrying out similar validations on an eight disk array, we
hope to see to what degree the previous observations were anomalous, and to discuss
possible reasons and model changes if the trends are still visible.

The remainder of this paper is organised as follows: in Section 2 we include a
summary of our existing models, before presenting the improved RAID 5 large partial
stripe write model in Section 3. We then validate our models more comprehensively
by comparing the analytical results with measurements from an eight disk array for a
variety of request sizes in Section 4.

2 RAID Model
Our RAID model is developed in a bottom-up hierarchical fashion. We begin by mod-
elling each disk drive in the array as a single M/G/1 queue. An important subtlety that
needs to be taken into account in the service time distribution is that modern disks are
zoned, with more sectors on the outer tracks than inner tracks. Therefore, a random
request is more likely to be directed to a sector on an outer track, and it is also faster to
transfer data on a track closer to the circumference than the centre of the disk.

The service time density of an access to a random location on a single zoned disk
is the convolution of the seek time, rotational latency and data transfer time probabil-
ity density functions. We use the seek time and rotational latency distributions defined
in [19] and the data transfer time distribution from [9]. We denote the random variables
of seek time, rotational latency and k-block transfer time as S, R and Tk respectively.
The response time distribution of the M/G/1 queue is obtained by numerically invert-
ing [1] the corresponding Pollaczek-Khintchine transform equation [6].

We then abstract the RAID as a fork-join queueing network [3] of M/G/1 queues. In
an N -queue fork-join network, (see Fig. 1), each incoming job is split into N subtasks
at the fork point. Each of these subtasks queues for service at a parallel service node
before joining a queue for the join point. When all N subtasks in the job are at the head
of their respective join queues, they rejoin (synchronise) at the join point.

Figure 1: Fork-join queueing model

It is difficult, however, to model job response times in a fork-join synchronisation
analytically. Indeed, exact analytical results only exist for the mean response time of a
two server system consisting of homogeneous M/M/1 queues [12]. Approximations for
mean response times for M/M/1 and M/G/1 fork-join queues are more abundant [12,
14, 15, 16, 18] but such results do not permit higher moments or full response time
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distributions to be calculated. Therefore, we have previously presented [9] an approach
using the maximum order statistic [5, 10] to derive an approximation to the cumulative
distribution function of a fork-join queue’s response time. This was inspired by [7],
which defined an approximation of the fork-join queue that enables the calculation of
both the mean and further moments of response time.

The standard fork-join network directly models the behaviour of a RAID system in
only a small number of cases (e.g. full stripe I/O operations in RAID 0). Consequently,
the fork-join model must be tailored to support the full range of I/O access patterns that
occur when performing read or write operations of different sizes on different RAID
levels. Our initial model is designed to accept a homogeneous stream of I/O requests
of a given size and type (RAID 01 or 5, read or write). We further assume that all
the service time distributions on all disks are identically distributed. For the sake of
notational simplicity, let Wd(t, γ, 1

µ ) define the cdf of the response time distribution of
a single M/G/1 queue (disk), γ is the arrival rate at an individual disk and µ is the mean
service rate. We assume there are n disks in the array and that the arrival rate of logical
I/O requests to the disk array as a whole is λ. In [9], these models are introduced and
we summarise them here.

The cdf of the response time for a b-block read from RAID 01 is:

Wread(t) =






(
Wd

(
t, λb

n , E[R] + E[S] + E[T1]
))b if b < n(

Wd

(
t,λ, E[R] + E[S] + E[T b

n
]
))n

otherwise

Similarly, the cdf of the response time of a b-block mirrored write to RAID 01 is:

Wwrite(t) =






(
Wd

(
t, 2λb

n , E[R] + E[S] + E[T1]
))2b if 2b < n(

Wd

(
t,λ, E[R] + E[S] + E[T 2b

n
]
))n

otherwise

The cdf of the response time for a b-block read from RAID 5 is:

Wread(t) =






(
Wd

(
t, λb

n , E[R] + E[S] + E[T1]
))b if b < n(

Wd

(
t,λ, E[R] + E[S] + E[T b

n
]
))n

otherwise

Due to parity calculation a RAID 5 write request is modelled differently for differ-
ent sized requests. The simplest RAID 5 write request is one which consists only of
a number of complete stripes (i.e. b mod (n − 1) = 0). In this case, computation of
parity does not require pre-reading of existing data and so the only operation is to write
to all disks. The cdf of request response time is therefore defined as:

Wwrite(t) =
(
Wd

(
t, λ, E[R] + E[S] + E[T b

n−1
]
))n

A write request involving a partial stripe write will consist of two separate requests.
The first is a pre-read for the calculation of the new parity. Then when all the parity
pre-reads are completed and the new parity calculated, the second request, a partial
stripe and new parity write request, is issued. Therefore, for partial stripe writes, we
define a mean service time and density as the average of the service time (mean or
density) of the parity pre-read and write request that follows.We note that these two
subtasks are not independent. Indeed, we assume that they are highly dependent, and
therefore the overall response time of a write request will be:

Wwrite(t) = P (2W ≤ t) = P

(
W ≤

(
t

2

))
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If a request consists of b < n−1
2 blocks (i.e. a small partial stripe write), the pre-

read involves reading the old parity and data that will be replaced for parity calculation,
then writing the new data to the same disks. The write will start after the last pre-read
completes, so one disk will need to complete a full rotation (Rmax ) to return to the
same sector. The overall response time cdf is therefore:

Wwrite(t) =
(

Wd

(
t

2
,
2λ(b + 1)

n
,
(2b + 1)(E[R] + E[S]) + Rmax

2(b + 1)
+ E[T1]

))b+1

The pdfs of both seek time and rotational latency must then be scaled accordingly
to conform to the mean service times above:

f ′(t) =

{
1

2(b+1) if t = 0
2b+1

2(b+1)f(t) otherwise

where f(t) is the probability density function of seek time or rotational latency.
For a large partial stripe write, n−1

2 ≤ b < n − 1, the new parity is calculated by
pre-reading from the disks that will not be written to and XORing it with the new data.
Therefore at some point in the request each disk in the array is written to. The cdf of
request response time is:

Wwrite(t) =
(

Wd

(
t

2
,λ, E[R] + E[S] + E[T1]

))n/2

If b > n− 1 and 0 < b mod (n− 1) < n−1
2 , at least one full stripe write will occur

followed by a small partial stripe write. The first request consists of the full stripe writes
and the pre-read, and the second is the partial stripe write. Let bmod = b mod (n− 1).
The cdf of request response time is:

Wwrite(t) =
(

Wd

(
t

2
,
λ(n + bmod + 1)

n
,

(n + bmod)(E[R] + E[S]) + Rmax

n + bmod + 1
+ E[T k

2 +
bmod+1

n
]
))n+bmod+1

2

In [9], our RAID models assumed homogeneous arrival streams. In [8] we used
multiclass queues to generalise these models for heterogeneous streams composed of
both reads and writes. The resulting request response time cdf of a RAID system with
a mixed arrival stream of read and write requests is defined as:

W (x) = preadWread(x) + (1− pread)Wwrite(x)

where pread is the probability that a request is a read.
We note that the arrival rate to the disk array defined for each type of request must

be modified to take the combined stream into account. For RAID 01 the arrival rate at
each disk becomes:

λ(pread min(b, n) + (1− pread)min(2b, n))
n

On RAID 5, the arrival rate at each disk is:

preadλ
min(b, n)

n
+ (1− pread)γ

where γ is the arrival rate at each disk in the array in the case that pread = 0.
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3 Improved Large Partial Stripe Write Model
Our validation work in [8] suggested that the model for large partial stripe following
full stripe writes (where n−1

2 ≤ b mod (n − 1) < n − 1) could be improved as it
tended to underestimate the measured results. Furthermore, on the eight disk array the
measurements showed that as the size of the partial stripe increases the mean response
time decreases, whereas in the analytical model [9] mean response time increases.

In order to improve the analytical model we analysed the physical behaviour on the
disk when a large partial stripe write follows a full stripe write. Specifically, we focused
on the amount of seeking each disk must do between the time that a partial stripe parity
pre-read completes and the partial stripe write begins. The fewer disks that are pre-read
(n − bmod − 1), the more likely that the pre-read will complete before the remaining
bmod + 1 disks complete their respective full stripe writes. If any of the bmod + 1 disks
complete before the pre-read has completed servicing then that disk must wait to write
the new data or parity. In this time, that disk may start servicing the next request in
its queue, or just rotate away from the desired position. Henceforth, when the pre-read
eventually completes, those disks will have to re-seek back causing additional seek and
rotational latency. However, if the pre-read completes first then, when another disk
completes its full stripe write, it can immediately write the new data or parity for the
large partial stripe write without any additional seeking. We accordingly approximate
the probability of the bmod + 1 disks having to seek as n−bmod−1

n .
However, as the number of full stripes written increases this relationship becomes

less relevant. This is because each disk will take different amounts of time to write
the (larger amount of) full stripe data and the additional pre-read time on some disks
will be insignificant in comparison. The effect of zoning amplifies these differences.
As the number of full stripes (k) increases, the disk that finishes first is less likely to
depend on whether there was an additional pre-read on that disk, and it is more likely
that all the disks will need to re-seek. Therefore, we define the probability of seeking
as 1− bmod−1

nk . Since all disks have to seek initially for the start of the full-stripe write,
the mean seek time becomes

(
1− bmod−1

2nk

)
(E[R] + E[S]). All other parameters in the

model remain the same as the previous model, so the cdf or request response time is:

Wwrite(t) =
(

Wd

(
t

2
,
λ(n + bmod + 1)

n
,

(
1− bmod − 1

2nk

)
(E[R] + E[S]) + E[T k+1

2
]
))n+bmod+1

2

4 Validation
We demonstrate the accuracy of our models by validating them against a real eight disk
RAID system. This is an improvement over [9], where RAID 01 was only validated
for one size of request (2 blocks) on a four disk array, and also over [8] where both our
RAID 01 and RAID 5 models were only validated against a four disk system.

Our experimental platform consists of an Infortrend A16F-G2430 RAID system
containing eight Seagate ST3500630NS disks. Each disk has 60801 cylinders. A sector
is 512 bytes and we have approximated, based on measurements from the disk drive,
that the time to write a single physical sector on the innermost and outermost tracks
are 0.012064ms (tmax ) and 0.005976ms (tmin ) respectively. The stripe width on the
array is configured as 128KB, which we define as the block size. Therefore there are
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(a) λ = 0.01 request/ms
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(b) λ = 0.03 requests/ms

Figure 2: Comparison of mean response time against block size for RAID 01 for dif-
ferent values of λ.

256 sectors per block. The time for a full disk revolution is 8.33ms. A track to track
seek takes 0.8ms and a full-stroke seek requires 17ms for a read request; the same
measurements are 1ms and 18ms respectively for write requests [13].

To obtain response time measurements from this system, we implemented a bench-
marking program that issues read and write requests using a master process and a num-
ber of child processes. These child processes are responsible for issuing and timing I/O
requests, leaving the master free to spawn further processes without the need for it to
wait for previously-issued operations to complete.

In order to validate the analytical model effectively, it was necessary to minimise
the effects of buffering and caching as these are not currently represented in the model.
We therefore disabled the RAID system’s write-back cache, set the read-ahead buffer
to 0 and opened the device with the O_DIRECT flag set. For each of the experiments
presented below, 100 000 requests were issued and the resulting means, variances, pdfs
and cdfs of the response times were calculated using the statistical package R.

4.1 RAID 01
Fig. 2 shows measured and modelled mean response times of reads and writes for RAID
01 for two different values of λ – a light load of λ = 0.01 requests/ms (Fig. 2(a)) and
a heavy load of λ = 0.03 requests/ms (Fig. 2(b)). For requests under a light load,
agreement between model and measurement is excellent. However under heavy load
the model tends to increasingly overestimate. The RAID controller re-orders jobs in a
queue for optimal performance [2], so a longer queue enables more re-ordering. This is
not represented in our model yet, hence the disparity between model and measurement.

Fig. 3 compares pdfs and cdfs for some randomly chosen parameters. Interestingly,
even if the measured and modelled cdfs do not have excellent agreement, their pdfs
show some similar trends.
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(a) 100% read requests, b = 6, λ = 0.01 (b) 100% write requests, b = 3, λ = 0.03 (c) 100% write requests, b = 4, λ = 0.01

Figure 3: RAID 01 b-block request response time pdfs and cdfs for arrival streams of
reads or writes with rate λ requests/ms.
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(a) RAID 5 read requests
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Figure 4: Comparison of mean response time against block size for RAID 5 for differ-
ent values of λ.
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(a) 100% read requests, b = 4, λ = 0.01 (b) 100% read requests, b = 6, λ = 0.03 (c) 100% write requests, b = 13, λ = 0.01

Figure 5: RAID 5 b-block request response time pdfs and cdfs for arrival streams of
reads or writes with rate λ requests/ms.

4.2 RAID 5
Fig. 4(a) shows measured and modelled mean response times for RAID 5 reads under
light and heavy loads. Similar to its RAID 01 equivalents, agreement is excellent
for light load, but under heavier load for larger block sizes, the model increasingly
overestimates the measurements. Fig. 4(b) shows measured and modelled results for
RAID 5 writes under light and heavy loads. The dips for both measurement and model
at 7 and 14 blocks occur because these are full stripe writes with no slow parity pre-
reads. For light load there is good agreement between model and measurement. For a
heavier load, both measurement and model quickly show signs of saturation.

Fig. 5 compares pdfs and cdfs for some randomly chosen parameters. The modelled
pdf in Fig. 5(b) displays the bimodal nature of the measured result, but not the peak of
the maximum value.

4.3 Mixed Reads and Writes
Fig. 6 shows measured and modelled mean response times for arrival streams with
varying proportions of reads and writes for RAID 01 for two different values of λ (0.01
and 0.03), while Fig. 8 shows the same for RAID 5. In both cases, we again observe
good agreement between measured and modelled results. Fig. 7 displays a selection of
full pdf and cdf results for RAID 01 mixed reads and writes, while Fig. 9 contains a
further selection for RAID 5. Particularly noteworthy is Fig. 9(a), in which the model
accurately captures the bimodal distribution of the measured results.

We were particularly interested in determining if some apparently spurious mea-
surement results in [8] could be reproduced on the eight disk array. For RAID 5 mixed
reads and writes we observed extremely long mean response times for 2-blocks re-
quests for all three mixes (25% reads, 50% reads and 75% reads) which were much

253 A.S. Lebrecht, N.J. Dingle and W.J. Knottenbelt

UKPEW 2008 – http://ukpew.org/



 20

 25

 30

 35

 40

 2  4  6  8  10  12  14

M
e
a
n
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Blocks

Measurement - 25% read
Model - 25% read

Measurement - 50% read
Model - 50% read

Measurement - 75% read
Model - 75% read
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Figure 6: Comparison of mean response time against block size for RAID 01 for mixed
arrival streams with different values of λ.

(a) 25% read requests, 75% write requests, b =
3, λ = 0.03

(b) 50% read requests, 50% write requests, b = 3,
λ = 0.03

(c) 75% read requests, 25% write requests, b = 14,
λ = 0.03

Figure 7: RAID 01 b-block request response time pdfs and cdfs for arrival streams of
mixed reads and writes with rate λ requests/ms.
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Figure 8: Comparison of mean response time against block size for RAID 5 for mixed
arrival streams with different values of λ.

(a) 25% read requests, 75% write requests, b =
4, λ = 0.01

(b) 50% read requests, 50% write requests, b = 7,
λ = 0.01

(c) 75% read requests, 25% write requests, b =
4, λ = 0.03

Figure 9: RAID 5 b-block request response time pdfs and cdfs for arrival streams of
mixed reads and writes with rate λ requests/ms.
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larger than the times for 2-block reads or 2-block writes and were not predicted by the
model. In Table 4 we again observe this phenomenon, and indeed see that it is even
more pronounced for 8- and 9-block transfers at λ = 0.03, suggesting it was not just an
artifact of the four disk configuration. Further investigation suggests that it is a result
of constraining all operations to begin at the start of a stripe, leading to unequal load
on some disks, as when this restriction is relaxed it does not occur.

5 Conclusion
In this paper we have presented an improved performance model for RAID systems
capable of calculating full request response time distributions. In particular, we have
improved the RAID 5 large partial stripe following full stripe write model to more
closely accurately observed behaviour. We validated our models for RAID 01 and 5
for reads, writes and mixtures of the two on a real-life RAID array with eight disks.

There are a number features which we still need to model in order to have a com-
prehensive model capable of representing real I/O workloads. Firstly, caching is not
yet supported in our model. Secondly, we would like to support sequential as well as
random I/O, to better model the effects of locality. Thirdly, we currently constrain the
alignment of RAID 5 write requests to start at the beginning of a stripe in all cases.
In the future, we would like to allow for requests that start with a partial stripe, fol-
lowed by further data. Preliminary investigations suggest that this also remedies some
of the unusual measurements for mixed reads and writes on RAID 5. Fourthly, all our
models assume fixed request sizes and we would like to extend them to incorporate
distributions of block sizes. Fifthly, we need to model the effect of the re-ordering of
requests by the RAID array when greater load is experienced. Finally, we have assumed
Markovian arrivals in our model, and have generated request streams that conform to
this assumption for our measurements. We intend to compare the model response times
with response times generated from real I/O traces.
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Appendix

Reads Writes
λ # Measured Modelled Measured Modelled

(ms−1) Blks Mean σ2 Mean σ2 Mean σ2 Mean σ2

(ms) (ms2) (ms) (ms2) (ms) (ms2) (ms) (ms2)
0.01 1 15.7 15.4 15.7 20.8 21.4 26.8 19.3 19.6

2 18.3 13.0 18.5 18.0 24.9 38.8 22.6 27.3
3 19.6 13.1 20.2 20.2 27.7 60.7 25.4 41.6
4 20.2 15.2 21.7 24.6 28.7 77.2 28.4 58.4
5 21.1 16.9 23.0 30.5 31.0 89.4 29.3 63.5
6 22.3 21.4 24.3 37.2 32.4 102.5 30.3 68.9
7 23.0 22.9 25.7 44.5 33.7 118.1 31.3 74.8
8 24.0 27.7 27.1 52.0 34.9 132.5 32.4 80.9
9 24.7 29.4 27.5 54.4 37.0 155.0 33.4 87.5

10 26.0 34.4 28.0 56.8 37.8 164.2 34.5 94.4
11 26.9 38.4 28.5 59.3 38.4 148.0 35.6 101.7
12 27.9 42.1 29.0 61.8 39.2 147.3 36.7 109.5
13 28.6 45.1 29.5 64.5 41.3 170.4 37.9 117.7
14 29.5 50.0 30.0 67.2 42.1 173.5 39.0 126.3

0.03 1 15.7 15.4 16.0 25.2 21.4 26.8 20.5 35.2
2 18.3 13.0 19.7 31.7 24.9 38.8 27.2 80.0
3 19.6 13.1 22.7 47.9 27.7 60.7 35.7 154.6
4 20.2 15.2 25.9 70.6 28.7 77.2 47.6 283.1
5 21.1 16.9 29.5 99.1 31.0 89.4 50.4 322.1
6 22.3 21.4 33.7 134.2 32.4 102.5 53.4 366.9
7 23.0 22.9 38.5 179.0 33.7 118.1 56.6 418.1
8 24.0 27.7 44.2 239.2 34.9 132.5 60.1 476.9
9 24.7 29.4 45.5 255.1 37.0 155.0 63.7 544.6

10 26.0 34.4 46.9 272.3 37.8 164.2 67.6 622.6
11 26.0 38.4 48.2 290.5 38.4 148.0 71.8 712.9
12 27.9 42.1 49.6 310.1 39.2 147.3 76.4 817.4
13 28.6 45.0 51.1 331.0 41.3 170.4 81.3 939.2
14 29.5 50.0 52.6 353.3 42.1 173.5 86.6 1081.8

Table 1: Mean and variance of request response time for RAID 01 reads and writes
against measured results.
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Reads Writes
λ # Measured Modelled Measured Modelled

(ms−1) Blks Mean σ2 Mean σ2 Mean σ2 Mean σ2

(ms) (ms2) (ms) (ms2) (ms) (ms2) (ms) (ms2)
0.01 1 15.9 17.0 15.7 20.8 32.3 129.2 39.5 192.0

2 19.5 32.4 18.5 18.0 46.1 566.2 45.7 193.8
3 20.9 34.2 20.2 20.2 48.1 132.0 50.6 232.5
4 21.9 34.1 21.7 24.6 48.1 128.4 49.4 201.6
5 22.6 34.3 23.0 30.5 48.0 124.4 49.4 201.6
6 23.3 35.1 24.3 37.2 46.9 118.9 49.4 201.6
7 23.8 35.6 25.7 44.5 31.4 83.7 28.4 58.4
8 25.8 52.7 27.1 52.0 48.1 1042.2 53.7 269.6
9 26.3 56.2 27.5 54.4 55.2 1464.3 57.0 312.6
10 27.4 64.8 28.0 56.8 51.0 699.5 60.7 362.8
11 28.0 68.8 28.5 59.2 50.5 699.7 49.0 213.1
12 28.9 73.7 29.0 61.8 49.8 668.5 48.0 204.6
13 29.3 73.9 29.5 64.5 47.5 590.5 46.6 193.6
14 29.9 78.5 30.0 67.2 38.6 121.8 32.4 80.9

0.03 1 16.2 21.5 16.0 25.2 41.7 408.1 44.9 346.8
2 23.9 106.7 19.7 31.7 152.6 11040.6 58.5 573.4
3 25.7 116.6 22.7 47.9 64.3 539.6 76.4 1036.4
4 27.1 129.2 25.9 70.6 63.0 524.6 78.0 1052.9
5 27.9 135.0 29.5 99.0 61.9 517.8 78.0 1052.9
6 29.0 148.2 33.7 134.2 60.0 537.7 78.0 1052.9
7 29.6 153.8 38.5 179.0 42.8 516.9 47.6 283.1
8 33.7 196.8 44.2 239.1 sat sat 96.9 1701.3
9 34.9 225.3 45.5 255.1 sat sat 119.3 2628.9
10 37.0 247.4 46.9 272.2 sat sat 152.9 4399.6
11 38.2 281.1 48.2 290.5 sat sat 91.2 1388.5
12 39.7 295.3 49.6 310.0 sat sat 89.2 1300.0
13 39.9 298.0 51.1 330.9 sat sat 85.4 1167.2
14 41.1 321.6 52.6 353.2 sat sat 60.1 476.8

Table 2: Mean and variance of request response time for RAID 5 reads and writes
against measured results.
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25% Reads, 75% Writes 50% Reads, 50% Writes 75% Reads, 25% Writes
λ # Measured Modelled Measured Modelled Measured Modelled

(ms−1) Blks Mean σ2 Mean σ2 Mean σ2 Mean σ2 Mean σ2 Mean σ2

(ms) (ms2) (ms) (ms2) (ms) (ms2) (ms) (ms2) (ms) (ms2) (ms) (ms2)
0.01 1 20.2 30.2 18.3 21.8 18.8 30.5 17.4 22.6 17.3 25.4 16.6 22.3

2 23.5 41.0 21.5 26.4 22.1 40.6 20.4 24.4 20.3 32.0 19.5 21.6
3 26.2 60.6 24.0 37.8 24.3 55.6 22.6 32.6 22.2 41.4 21.4 26.5
4 27.2 73.5 26.4 52.1 25.4 66.0 24.7 43.7 23.0 49.2 23.1 34.3
5 29.3 90.2 27.6 57.6 27.1 82.9 25.9 49.7 24.4 61.0 24.4 40.4
6 30.7 104.5 28.7 64.0 28.4 95.4 27.2 56.7 25.6 71.0 25.7 47.6
7 31.9 120.3 29.9 71.1 29.5 106.5 28.4 64.6 26.6 78.0 27.0 55.7
8 33.0 130.7 31.1 79.0 30.5 115.7 29.7 73.5 27.6 86.6 28.4 64.5
9 34.8 154.1 32.0 85.7 32.0 137.3 30.5 79.6 28.6 96.1 29.0 69.1

10 35.9 163.6 32.9 92.9 33.1 143.0 31.3 86.1 29.8 103.8 29.6 74.1
11 36.7 156.1 33.8 100.6 34.2 147.7 32.1 93.1 30.9 113.6 30.3 79.3
12 37.7 164.1 34.8 108.7 35.0 151.2 32.9 100.6 31.8 114.9 30.9 84.9
13 39.6 186.2 35.8 117.5 36.6 176.9 33.7 108.6 32.9 132.5 31.6 90.9
14 40.3 187.3 36.8 126.8 37.6 181.3 34.5 117.1 34.0 141.0 32.2 97.2

0.03 1 21.2 49.1 18.3 21.8 19.7 46.4 18.2 32.3 17.8 35.1 17.1 29.2
2 26.7 101.8 25.0 68.7 24.6 85.4 23.0 56.2 21.9 61.0 21.2 43.6
3 32.0 189.6 31.6 126.8 28.6 140.7 28.1 98.4 24.9 91.2 25.2 71.6
4 35.3 301.2 40.2 217.2 31.0 199.2 34.4 159.4 26.5 118.0 29.7 110.7
5 39.0 405.3 43.6 256.0 34.2 269.1 38.0 197.0 29.0 160.0 33.4 144.2
6 42.6 529.8 47.3 308.1 37.7 372.2 42.1 247.3 31.8 222.8 37.6 188.6
7 46.2 671.2 51.4 375.1 40.5 458.3 46.7 317.5 33.9 273.3 42.4 250.8
8 49.7 836.0 56.1 464.3 43.3 592.7 52.1 420.5 36.3 341.9 48.2 345.5
9 53.7 1012.3 59.2 534.2 46.6 685.4 54.6 482.5 38.2 388.8 50.1 389.5

10 57.0 1240.0 62.4 615.9 49.7 812.5 57.2 555.3 40.7 451.2 52.1 440.7
11 60.2 1491.2 65.9 711.8 52.0 944.3 60.0 641.1 43.5 551.2 54.1 500.6
12 65.5 2472.3 69.7 824.6 55.5 1212.1 63.0 742.4 45.3 615.0 56.3 570.9
13 72.1 3206.3 73.7 957.9 60.7 1739.7 66.2 862.8 48.4 788.1 58.6 653.8
14 80.4 5305.8 78.1 1116.3 63.2 1824.8 69.6 1006.3 51.1 896.7 61.1 752.0

Table 3: Comparison of mean response times and variances for mixed read and write
request streams for RAID 01.
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25% Reads, 75% Writes 50% Reads, 50% Writes 75% Reads, 25% Writes
λ # Measured Modelled Measured Modelled Measured Modelled

(ms−1) Blks Mean σ2 Mean σ2 Mean σ2 Mean σ2 Mean σ2 Mean σ2

(ms) (ms2) (ms) (ms2) (ms) (ms2) (ms) (ms2) (ms) (ms2) (ms) (ms2)
0.01 1 27.8 130.8 33.3 241.9 23.5 109.1 27.3 227.1 19.5 68.2 21.4 152.1

2 37.9 453.6 38.5 260.2 30.9 312.4 31.6 247.9 24.9 173.2 25.0 164.8
3 41.3 233.8 42.4 304.0 34.5 258.4 34.7 284.1 27.7 189.9 27.3 185.7
4 41.6 227.5 42.0 261.2 35.1 250.3 34.9 244.9 28.5 185.9 28.1 163.0
5 41.7 222.1 42.5 258.5 35.7 247.1 35.8 244.5 29.3 189.4 29.3 166.5
6 41.3 205.6 43.0 257.4 35.5 227.7 36.6 246.0 29.5 174.1 30.4 171.3
7 30.0 92.2 27.7 55.4 28.5 94.3 27.0 52.1 26.3 73.5 26.3 48.5
8 41.1 641.9 46.9 323.4 35.5 398.6 40.2 302.9 30.4 216.6 33.6 211.4
9 46.1 961.2 49.4 368.0 38.3 576.4 41.9 339.1 31.7 269.7 34.6 232.6

10 44.5 569.8 52.0 418.9 38.4 419.2 43.7 379.2 32.7 241.4 35.7 255.2
11 44.4 562.5 43.9 214.7 38.7 415.2 38.8 191.1 33.3 253.0 33.7 139.9
12 44.4 547.0 43.4 196.8 38.9 407.7 38.7 173.3 33.7 242.7 33.9 129.7
13 42.8 474.3 42.8 179.1 38.0 351.5 38.6 156.6 33.5 216.6 34.2 120.3
14 37.0 145.3 31.8 78.6 35.2 150.9 31.2 75.5 32.6 126.5 30.6 71.7

0.03 1 33.7 337.2 36.7 355.6 26.8 235.0 29.3 295.7 21.0 123.3 22.4 181.8
2 91.5 4961.0 46.7 535.7 57.8 2138.8 36.5 414.7 37.5 804.9 27.6 240.3
3 53.2 597.0 58.5 863.5 43.5 545.4 44.2 612.8 34.9 395.3 27.6 240.3
4 53.5 604.0 61.0 888.4 44.5 551.1 47.2 641.3 35.9 397.1 35.7 360.1
5 53.5 603.2 63.1 920.7 45.5 575.8 50.3 693.2 36.8 407.4 39.2 411.0
6 53.2 621.4 65.2 960.8 45.4 560.3 53.7 757.3 37.4 402.0 43.2 474.1
7 41.3 479.6 45.1 256.2 38.7 411.1 42.7 229.7 34.6 301.3 40.5 203.9
8 1341.1 695702 81.7 1467.7 102.3 10900 68.0 1129.0 53.5 1884.4 55.6 712.7
9 2250.1 2177073 95.6 2057.0 130.2 16333 76.0 1456.8 60.0 2562.2 59.6 851.7

10 170.2 60233 114.0 2993.3 78.4 3753.9 85.7 1907.0 53.5 1357.5 64.1 1020.1
11 193.7 74681 82.4 1077.8 80.1 4047.0 70.7 743.3 55.2 1456.8 59.0 496.3
12 350.1 186247 86.1 1390.2 83.8 5213.8 73.9 833.3 56.6 1587.7 61.29 517.8
13 444.7 211185 93.3 2669.0 80.5 4935.4 78.5 1116.3 55.7 1511.8 63.9 578.3
14 64.1 3934.3 58.2 456.3 55.4 1182.5 56.3 428.9 48.2 677.6 54.5 394.6

Table 4: Comparison of mean response times and variances for mixed read and write
request streams for RAID 5.
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Response time distributions via
reversed processes

Peter G. Harrison∗ Maria G. Vigliotti∗

Abstract

Response time calculations in stochastic networks – e.g. queueing net-
works – are usually developed in terms of sample path analyses beginning
in an equilibrium state. We consider the joint probability distribution of
the sojourn times of a tagged task at each node in a network and observe
that this is the same in both the forward and reversed processes. There-
fore if the reversed process is known, each node-sojourn time can be taken
from either process. In particular, the reversed process can be used for
the last node in a path and the forward process for the other nodes in a
recursive analysis. In this way we can derive quickly and systematically
existing results for response time probability densities in tandem, open
and closed tree-like, and overtake-free Markovian networks of queues. We
also show how to apply the method in non-queueing systems.

1 Introduction

The response time of a particular, ‘tagged’ task along a path in a network of
nodes of some kind is defined to be the sum of the sojourn times of the task (i.e.
its delays) at those nodes that constitute the path. More generally, the response
time distribution follows directly from the joint probability distribution of the
node-sojourn times. For a path comprising the sequence of nodes (1, 2, . . . , m),
let the response time R = T1 + T2 + . . . + Tm, where Ti is the sojourn time
at node i, (1 ≤ i ≤ m), with probability distribution function Ti(t). Then the
joint sojourn time distribution is J(t1, . . . , tm) = IP(T1 ≤ t1, . . . , Tm ≤ tm) and,
denoting Laplace-Stieltjes transforms (LSTs) by asterisks, the m-dimensional
LST of the joint sojourn time distribution is

J∗(θ1, . . . , θm) =
∫ ∞

0
. . .

∫ ∞

0
e−(θ1t1+...+θmtm)dJ(t1, . . . , tm)

The response time distribution then has LST R∗(θ) = J∗(θ, . . . , θ). When the
sojourn times Ti are independent, this simplifies to R∗(θ) = Πm

i=1T
∗
i (θ).

If the sojourn time at each node i depends solely on the state, Ni say,
existing at the node immediately prior to the arrival of the tagged task, the
conditional joint sojourn time LST is J∗(θ1, . . . , θm | n) = Πm

i=1T
∗
i (θi | ni)

where T ∗i (θi | ni) =
∫∞
0 e−θitdIP(Ti ≤ t | Ni = ni)1. In such networks, response

∗Department of Computing, Imperial College London, {pgh,mgv98}@doc.ic.ac.uk
1For example, when m = 2, J∗(θ1, θ2 | N = n) = EI [ EI [e−(θ1T1+θ2T2) | T1,N = n] | N =

n] = EI [e−θ1T1 EI [e−θ2T2 | T1,N = n] | N = n] = EI [e−θ1T1 EI [e−θ2T2 | N2 = n2] | N1 = n1].

A. Argent-Katwala, N.J. Dingle and U. Harder (Eds.): UKPEW 2008, Imperial College London, DTR08-9
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time distributions can be computed iteratively through their LSTs using the
result that:

J∗(θ1, . . . , θm | l) = Πm
i=1T

∗
i (θi | ni)IP(N = n | L(0) = l)

where bold type indicates vectors and the random variable Li(t) is the state of
node i at time t, so that the initial state is L(0) and Ni = Li(T−i ) when the
tagged task arrives at node i at time Ti. Of course, if the Ni are independent for
i = 1, . . . , m, this reduces to the above result that J∗(θ1, . . . , θm) = Πm

i=1T
∗
i (θi).

In queueing networks it is often the case that the node sojourn times depend
only on the queue length at the arrival instant, for example in the overtake-free
networks of [9], but the computation of the transient probabilities IP(N = n |
L(0) = l) is problematic; see [5] for example. If these probabilities can be found
(or avoided), the method applies in both open and closed networks; see the
above citations, for example.

In the present contribution, we apply a completely different approach to the
computation of the LSTs of response times in Markovian networks at equilib-
rium, via joint sojourn time distributions, using reversed processes. The idea is
based on the observation that sojourn times are the same whether one considers
the forward process or its reversed process. When sojourn times depend only
on the state existing at a node at the arrival instant and the reversed process is
separable, i.e. a synchronising network of m reversed nodes, we can use the for-
ward sojourn time at node 1 and the reversed sojourn time at the last node m; a
recursive analysis allows us to consider only the case m = 2, nodes 1, . . . , m− 1
constituting a single aggregate ‘super-node’ in the recursion.

In the next section, we define our method and apply it to a range of queue-
ing networks, providing greatly simplified derivations that hold the potential
of automation through the reversed compound agent theorem (RCAT). Simple
properties of response times in G-networks, which are actually non-queueing net-
works with very different response time characteristics [6], follow immediately,
and an alternative methodology is revealed in more complex cases. Generalisa-
tions are considered in section 4, focusing on a tandem pair of first-come-first-
served (FCFS) queues with Erlangian service times; note that in general, such
networks do not even possess a product-form solution. The paper concludes in
section 5 where future potential of the method is evaluated.

2 Node-sojourn times and reversed processes

First, let us consider the sojourn times spent by a task in a pair of nodes that are
connected in the sense that the task first sojourns in node 1, for time T1, after
which it proceeds to node 2 and sojourns there, for time T2, before departing
from the system. Suppose that the initial state of the system, i.e. that existing
immediately prior to the arrival of the task at node 1, is s0. In many cases, e.g.
a pair of tandem queues, the state s is a pair, s = (s1, s2), where si describes
the state of node i only, i = 1, 2. We call such a state separable.

The sojourn time at node 1, T1 say, can be calculated as the first passage
time from the initial state to exit from the state in which the tasks departs
node 1. In general, this can involve arbitrary transitions in the whole system,
i.e. be influenced by the evolution of node 2 as well as node 1. However, often,
T1 is determined solely by the initial state and the evolution of node 1, as in
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the case of constant rate queues, for example. In this case, the conventional
approach to sojourn time analysis is to consider the state of the system at the
instant of the task’s departure from node 1 and use this as the initial state for
the sojourn at node 2; this may also (or may not, of course) then depend solely
on the evolution of node 2.

The properties we need to use this technique are therefore:

• The state of the system is separable, i.e. s = (s1, s2), where si describes
the state of node i only, i = 1, 2;

• The sojourn time of the tagged task at each node depends solely on
the node’s state at its arrival instant – implying that the node has the
‘overtake-free’ property of [9] which requires that the passage of the tagged
task through the node is not influenced by tasks at any other node;

• The sojourn time at each node can be characterised as a first passage time
in a Markov chain describing the node’s behaviour during that sojourn
insofar as it affects the tagged task.

Notice that the last point does not necessarily require the Markov chain de-
scribing the whole system or even the node: for example a transient chain
representing a queue with no arrivals is sufficient if the first property holds.
This is a traditional approach that was used to obtain the Laplace transform of
response time distributions in cyclic, tree-like and overtake-free networks in the
1980s [9, 2, 5].

Our alternative approach uses the observation that sojourn times are the
same whether one considers the forward process or its reversed process. Thus,
given initial state s0 = (s0;1, s0;2) in a two-node network, we may take the
sojourn time at the first node in the forward process (conditioned on s0;1) and
the reversed sojourn time at the second node in the reversed process, conditioned
on the state at the end of the two sojourns. Notice that the reversed sojourn
time is not necessarily dependent on only the initial state pertaining to the
second node (final state in the forwards process). Indeed, the reversed process
itself may depend on the joint state of the whole system, even if the forward
node was overtake-free.

Let the reversed sojourn time at node i be denoted by T̃i. Then the LST of
the joint sojourn time distribution can be written

J∗(θ1, θ2) = EI [ EI [e−(θ1T1+θ2T̃2) | S(0)]]

= EI [ EI [ EI [e−(θ1T1+θ2T̃2) | T1,S(0)] | S(0)]]

= EI [ EI [e−θ1T1 EI [e−θ2T̃2 | T1,S(0)] | S(0)]] (1)

where the random variable S(t) denotes the state of the system at time t. Now
suppose that the state vector is separable, so that S(t) = (S1(t), S2(t)) as de-
scribed above, and that the reversed sojourn time at node 2 depends only on the
state existing at the arrival instant of the tagged task in the reversed process.
Then we have

J∗(θ1, θ2) = EI [ EI [e−θ1T1 EI [e−θ2T̃2 | S2(0)] | S(0)]]

If further the (forward) sojourn time at node 1 depends only on its initial state
S1, we find

J∗(θ1, θ2) = EI S1,S2 [T
∗
1 (θ1 | S1(0))T̃ ∗2 (θ2 | S2(0))] (2)

Response Time Distributions via Reversed Processes 264

UKPEW 2008 – http://ukpew.org/



To summarise, the conditions we need to apply equation 2 to a two-node
network are:

1. The state of the system separable;

2. The sojourn time at node 1 depends solely on the initial state at node 1;

3. The reversed sojourn time at node 2 depends solely on the initial state at
node 2;

4. The sojourn, respectively reversed sojourn, time at nodes 1 and 2 can
be characterised as first passage times in Markov chains describing the
respective node’s behaviour during that sojourn.

Conditions 3 and 4 are aided by a specification of the reversed process for node
2. This may be provided by the Reversed Compound Agent Theorem (RCAT),
which induces a systematic way to construct the reversed process of a separable
synchronisation between two Markov chains [3]; see the next two sections. Note
that the reversed response time in the second node is not, in general, a response
time in the same sense and may be hard to determine even if the reversed
process of the node is known, e.g. by RCAT. The above conditions can be
relaxed, according to equation 1, but the ensuing analysis is very much more
complex, involving the evolution of the joint state.

Paths of more than two nodes can be handled recursively, building a path
by adding one node at a time – at each stage, a two-node path is considered
comprising the current (partial) path as one node and the new node added as
the other. This method is powerful and derives all the known results on response
time distributions in overtake-free queueing networks, as we discuss in section 3.
Furthermore, it could open the door to non-queueing applications, but it must
be remembered that the above conditions are quite stringent, especially the
third and fourth.

In the next section we illustrate the new technique in queueing networks,
obtaining a concise explanation of several previous results. We then consider
further applications in section 4, comparing the conditions required with the
separable reversed process that may be given by RCAT.

3 Queueing networks

Queueing networks are relatively tractable since the M/M/1 queue is reversible,
i.e. its reversed process is the same M/M/1 queue – a result routinely derivable
by RCAT, but a well known fact anyway [8, 5, 3]. Moreover, the queue left
behind by any departing task comprises precisely the tasks that arrived during
its sojourn. Therefore, we have the following result:

Proposition 3.1 At equilibrium, the reversed sojourn time in an M/M/1 queue
has the same probability distribution as the forward sojourn time.

Proof In the reversed process, the initial state is the number of tasks that
arrived during the (forward) sojourn of the tagged task, n say. Consequently,
the reversed sojourn time is the sum of n + 1 service times.2 Conditioned on

2This uses the fact that the residual service time of the task being served on arrival (i.e.
reversed departure) of the tagged task is distributed as a full (exponential) service time.
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Figure 1: Two M/M/1 queues in tandem and the reversed process

their respective initial states, therefore, the reversed sojourn time is equal in
distribution to the (forward) sojourn time. The result now follows since the
equilibrium probability distribution of the queue length immediately before an
arrival is the same in both processes, these both being an M/M/1 queue. ♠
The result of the previous section is now easy to apply, in both open and closed

queueing networks. We begin with a tandem pair and a cycle of two M/M/1
queues.

3.1 Tandem and cyclic pair of queues

Consider first the tandem pair of queues depicted in figure 1 – the cyclic coun-
terpart is simply obtained by connecting the departures of the second queue to
the arrivals of the first.

The forward and reversed nodes are both shown, and the forward response
time at node 1 and reversed response time at node 2 are illustrated, as per
section 2. Possible sample paths for the forward node 1 and node 2 processes
are shown in figure 2, which illustrate the passage of the tagged task through
the network. This arrives at node 1 to find a queue of length 4 and, on departing
from node 1, finds a queue of length 3 at node 2. The traditional method of
analysis investigates such sample paths and needs to consider the (transient)
probability distribution of the node 2 queue length at the departure instant of
the tagged task from node 1.

In our alternative approach, we consider the sample paths in the forward
and reversed processes together, beginning in the same initial state – (4,8) in
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Figure 3: Forward and reversed sample paths given initial state (4,8)

the sample paths shown in figure 3. For the forward response time at node 1 we
look to the right of the vertical axis and for the reversed response time at node
2 we look to the left. However, by equation 2, we only need to condition on
the initial joint state. Since forward and reversed sojourn times are identically
distributed by proposition 3.1, we have:

J∗(θ1, θ2) = EI S1,S2 [T
∗
1 (θ1 | S1)T ∗2 (θ2 | S2)]

=
∑

n1,n2≥0

πn1n2

(
µ1

µ1 + θ1

)n1+1 (
µ2

µ2 + θ2

)n2+1

The equilibrium probabilities π are the standard product-form solution [7, 5],
which is most easily derived by RCAT. In fact, an added advantage of RCAT
is that it constructs the required reversed process for node 2. Here, we already
know what this process is – the same M/M/1 queue – but we do not know this
for general nodes, even G-queues (with negative customers) [1, 4].

The above result generalises inductively to overtake-free paths in both open
and closed networks to give the following:

Proposition 3.2 For overtake-free path z = (z1, z2, . . . , zm) in a queueing net-
work of M nodes with state space S at equilibrium (1 ≤ m ≤ M), the LST of
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the joint sojourn time probability distribution is

J∗(θ1, . . . , θm) =
∑

(n1,...,nM )∈S

πn1,...,nM

m∏

j=1

(
µzj

θj + µzj

)nzj +1

where πn1,...,nM is the equilibrium probability distribution of the network’s state
immediately prior to the instant of arrival of a task at any node.

Notice that πn1,...,nM is well defined by the arrival theorem [5], being the same
as an open network’s steady state probabilities (at a random time point) or the
steady state probabilities of a closed network with population reduced by one,
depending on whether the network in question is open or closed, respectively.

In the case of open networks, πn1,...,nM is a product of the form π1(n1) . . . πM (nM )
where πi(ni) = (1− xi)xni

i for some constants xi, and so the result simplifies to

J∗(θ1, . . . , θm) =
m∏

j=1

µzj (1− xzj )
θj + µzj (1− xzj )

This is consistent with the fact that in a tandem series of stationary M/M/1
queues with fixed-rate servers and FCFS discipline, the sojourn times of a given
task in each queue are independent. Interestingly, the proof of this result uses
properties of reversibility and so we include it as an appendix, [8]. There is
one obvious generalisation: the final queue in the series need not be M/M/1
since we are not concerned with its output. Also, the same result holds, by the
same reasoning, when the final queue is M/G/c for c > 1. This contrasts with
a similar result we get with our alternative approach in the next subsection.

In either approach, we observe that if service rates varied with queue length,
we could not ignore tasks behind a given tagged task, even when they could not
overtake, because they would influence the service rate received by the tagged
task. Except in special cases, therefore, constant service rates are required.

3.2 G-networks

Suppose we have a tandem network comprising an M/M/1 queue and a G-queue
that has an additional external arrival stream of negative tasks that remove the
last task in the FCFS queue when it is non-empty [1]. If the G-queue is the
first node, the conditions in section 2 are satisfied since the network is separable
(by RCAT [4]), the second node is a reversible M/M/1 queue and the response
time in the first queue depends only on the initial state. The response time
distribution therefore has LST which is the product of that for the G-queue and
that for the M/M/1 queue with arrival rate equal to the positive throughput
from queue 1, i.e. the product of the external positive arrival rate and the
probability of a task not being ‘killed’.

Now suppose the G-queue is the second node, node 1 being M/M/1. The
network is still separable and the sojourn time at the first node depends only
on the initial state. However, the reversed (and forwards) sojourn time at
the second node depends on the evolution of the first node since synchronised
transitions with it influence the passage of the tagged task.3 The reversed node

3In the forwards process, arrivals from the first node offer protection from the negative
arrivals at node 2; see [6].
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2 process can be determined using RCAT and, given initial state (n1, n2), the
reversed response time is the time for n2 + k departures to take place, given
k ≥ 0 reversed negative arrivals (that increase the reversed queue length). This
is a complex, transient calculation, analogous to that of [6]. The case with both
nodes being G-queues is even more complex, the actual solution involving a
Fredholm integral equation of the second kind.

It is interesting to note that the separable case has the G-queue as node 1
whereas an M/G/1 queue must be second when paired with an M/M/1. This
was highlighted as unexpected in [6] but is routine to show in the new approach.
Notice that if an M/G/1 queue were paired first with an M/M/1 queue, with
FCFS queueing discipline, the network is not separable – it has long been known
that no product-form then exists for the equilibrium queue length probabilities,
and the conditions of RCAT correspondingly fail.

4 Generalised networks

The most obvious route to finding a new separable response time distribution in
a network of two nodes requires that the network satisfy RCAT (so the reversed
process is separable) and that the reversed sojourn time is tractable at the
second node. This is not going to be an easy task since the first requirement
would itself imply a new product-form. Nevertheless, suppose the first node is
a queue with Erlang-2 service time (sum of two identical exponential random
variables) and the second M/M/1. The reversed sojourn time at a reversed
M/M/1 queue poses no problem, as above, and the sojourn time distribution in
node 1 can be calculated as a mixture of Erlang distributions, using the initial
steady state queue length probabilities. However, these probabilities are not
simple, nor even known in closed form, and worse still, RCAT does not apply,
so the network is unlikely to be separable.

We therefore seek to find a modified network which satisfies RCAT, for
example creating additional external arrivals at node 2 by ensuring that all
states in node 1 have an incoming, active, synchronising action type, using
invisible actions [4]. If such a modification can be found and RCAT satisfied,
the joint sojourn time distribution would indeed follow; the work proceeds.

5 Conclusion

Response times distributions – more generally, joint node-sojourn time distri-
butions – can be derived much more simply and generally than previously using
the reversed process of a separable network. In this way, most of the known
separable solutions for the LSTs of response time distributions in queueing net-
works can be obtained. Moreover, many other special cases of product form
solutions can be explained. Although it appears problematic at present to find
completely new separable solutions, the methodology provides a handle for such
problems and certainly is conducive to automation. In fact, new product-forms
for equilibrium state probabilities could provide a basis, since they would at
least, via RCAT, provide the right, separable reversed node processes.
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A Appendix: Proof of independence in tandem M/M/1

queues

Proposition A.1 In a tandem series of stationary M/M/1 queues with fixed-
rate servers and FCFS queueing discipline, the sojourn times in each queue of
a tagged task are independent.

Proof First we claim that the sojourn time of a tagged task, C say, in a
stationary M/M/1 queue is independent of the departure process before the
departure of C. This is a direct consequence of the reversibility of the M/M/1
queue.

To complete the proof, let Ai and Ti denote C’s time of arrival and sojourn
time respectively at queue i in a series of m queues (1 ≤ i ≤ m). Certainly, by
our claim, T1 is independent of the arrival process at queue 2 before A2 and so
of the queue length faced by C on arrival at queue 2. Thus, T2 is independent of
T1. Now, we can ignore tasks that leave queue 1 after C since they cannot arrive
at (nor influence the rate of) any queue in the series before C, again because all
queues have single servers and FCFS discipline. Thus, T1 is independent of the
arrival process at queue i before Ai and so of Ti for 2 ≤ i ≤ m. Similarly, Tj is
independent of Tk for 2 ≤ j < k ≤ m. ♠
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Abstract— Most of the ad hoc routing protocols assume that all wireless networks are 

symmetric (bidirectional links). In reality any practical network has some links may be 

unidirectional and hence the network is asymmetrical rather than symmetrical. The presence 

of such links can reduce the performance of the existing protocol and could lead to network 

clogging. In this paper we introduce a Multipath Distance Vector Zone Routing Protocol for 

Asymmetric mobile ad-hoc networks (MDVZRPA), which is a modification to MDVZRP.  It is 

a hybrid routing protocol assumes that all routes in the routing table are active and usable, 

unless a broken link has been reported or discovered for reducing control traffic. 

 

In addition to adopting MDVZRP technique, MDVZRPA is designed to deal with both 

bidirectional and unidirectional links by adding a new field called Symmetric-link in each 

route to distinguish between the two link types.  

 

 

Keywords: MDVZRP, Asymmetrical Networks, Unidirectional and Bidirectional links. 

I. INTRODUCTION 

 

n recent years, mobile computing has enjoyed a tremendous rise in popularity. The 

continued minimization of mobile computing devices and the extraordinary rise of 

processing power available in mobile laptop computers combine to put more and 

better computer-based applications into the hands of a growing segment of the population. 

Mobile devices, such as laptop computers, Pocket PCs, cellular phones, etc., are now 

easily affordable, and are becoming more popular in everyday life [14]. At the same time, 

network connectivity options for mobile hosts have grown tremendously. The markets for 

wireless telephones and communication devices are experiencing rapid growth. 

Projections have been made that, in nowadays there are more than billion wireless devices 

in use. With the availability of mobile computing devices, users often have a natural 

tendency to share information between them, even though it is not planned in advance and 

there is no infra structure available for connection, for example, workers at rescue scenes 

I 
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and employees in a meeting room, or conference or business. Therefore, the wireless 

mobile ad hoc networks become the practical and conventional solution in such like 

situations, without requiring each user to connect to the internet or to a wide-area network 

to communicate with each other because of cost and time. This type of network is easy 

and fast of deployment, where the nodes are communicate with each other through 

wireless medium without any fixed infrastructure. Mobile ad-hoc network was also being 

named as MANET [1] by IETF The Internet Engineering Task Force (IETF) is a large 

open international community of network designers, operators, vendors, and researchers. 

 

A wireless ad hoc network as a decentralizing network offers an easy and fast connection 

between collection of autonomous nodes or terminals by forming a multi hop radio 

network. Since the nodes communicate over wireless links, they have to contend with the 

effects of radio communication, such as noise, fading, and interference. In addition, the 

links typically have less bandwidth than in a wired network. Each node in a wireless ad 

hoc network functions as both a host and a router, and the control of the network is 

distributed among the nodes [11] [12].  

 

      In general, MANET topology is dynamic, because of nodes departure and new nodes 

arrival during the connectivity time among the nodes, and asymmetrical, because the 

nodes communicate over wireless links which forms a different transmission range. 

Hence, there is a need for efficient routing protocols to offer optimum routes during the 

network establishing time to allow the network nodes to communicate over multi hop 

paths. Some of MNET features are characteristic of the type of packet radio networks that 

were studied extensively in the 1970s and 1980s. In general, a multi-hop routing protocol 

is needed in a mobile ad hoc network, because two hosts wishing to exchange packets 

may not be able to communicate directly with each other because they are out of radio 

range [14]. Figure (1) shows a simple ad hoc network of four mobile nodes using different 

wireless transmission range interfaces. Node A and D are not included within the wireless 

transmission range of node C.  Only node A is included within the wireless transmission 

range of node D, and node D is not included within the transmission range of node B, as 

indicated by the circle around A, B and C. Nodes B, C and D are all included within the 

wireless transmission range of node A. If B and D want to communicate with each other 

by exchanging packets, they may ask node A to forward packets for them because node A 

is within the overlapped wireless transmission range between node B and node D. 

 

 
Fig (1): MANET with four wireless Mobile Nodes 
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In any practical MANET, packets are travel over one or more hops from one node to 

another node as demonstrated in Figure (1). In reality, the routing problem may be even 

more complex than this example, because of the nodes different wireless transmission 

range, and the network topology features which is dynamic because any or all of the 

nodes associated with the network may move at any time [14]. To provide routing the 

conventional way in MANET is to make each mobile node take the role as a router, and 

apply an existing routing protocol between them [16][17]. The fundamental difference 

between MANETs and the traditional wired networks that is the wired networks topology 

is stationary and static. This made the traditional protocols such as TCP/IP are not suitable 

for MANE and leads us for  a specific  requirement and constraints to provide routing 

protocols in such dynamic environments. 

 

Over the few last years, many routing protocols have been proposed, where most of these 

protocols are based on distance vector or link state algorithms. In distance-vector routing 

protocols (i.e. DSDV) [4], routing information are periodically advertised to all nodes to 

get an up-to-date view over the entire network. Each node during the network establishing 

time sends to and receives from, all its neighbor nodes periodic messages and routing 

information to build and update its routing table, which contains the distance from itself to 

all possible destinations. Each node can decide whether to keep or update the next hop as 

the best and shortest path from itself to the specified destination based on comparison of 

the distances obtained from its neighbors. When each node has a packet to send to some 

destination, it simply forwards the packet to the decided next hop router. The advantage of 

this approach is that routes between arbitrary source - destination pairs are readily 

available, all the time, while the disadvantages are that the routing tables will occupy a 

large amount of space if the network is large, and that the updates may lead to inefficient 

usage of network resources if they occur too frequently. 

 

Since ad-hoc networks are bandwidth limited and their topology changes often, an 

Optimized Link-State Protocol (OLSR) [5] has been proposed. While being suitable for 

small networks, some scalability problems can be seen on larger networks. The need to 

improve convergence and reduce control traffic has led to algorithms that combine 

features of distance-vector and link-state schemes. Such a protocol is the wireless routing 

protocol (WRP) [10], which eliminates the counting-to-infinity problem and avoids 

temporary loop without increasing the amount of control traffic. [11, 12]  

 

      In addition to the view point categorizing routing protocols in terms of either distance 

vector or link state routing, routing protocols for MANET also can be classified as 

uniform, non uniform or reactive routing protocols versus proactive routing protocols. In 

the reactive routing approach, a node initiates a route discovery (Rout requisite) only 

when want to communicate with a destination which  has no available rout to it in its 

routing table, in other words, a routing protocol does not initiate route request until it is 

needed(Route On Demand). AODV [2], DSR [14], and TORA [13] are the most famous 

reactive routing protocols for MANET. The disadvantages of such algorithms are high 

latency time in route finding and excessive flooding can lead to network clogging 

(Blocking). On the contrary, the proactive routing approach is based on the exchange of 

knowledge of network topology periodically [9]. The proactive protocols provide a 
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needed route instantly at the expense of bandwidth because of transmitting periodic 

updates of topology frequently.  

 

Hybrid routing protocols also exist and they try to achieve an efficient balance between 

both categories of protocols, where combining both the proactive and the reactive 

approach. ZRP is an example of hybrid routing protocols, was introduced in 1997 by Haas 

and Pearlman [6][7]. A more fine grained classification of ad-hoc routing protocols and 

taxonomy for comparing them can be found in [15].  

I. SYMMTRIC AND ASYMMTRIC NETWORKS 

 In a symmetric computer network, all nodes can transmit and receive data at equal 

rates. Asymmetric networks, on the other hand, support disproportionately more 

bandwidth in one direction than the other. This can be a problem in wireless networks 

which adopt a TCP technique where TCP relies on ACKs for reliable delivery and for 

congestion control. If ACKs are not reliably returned the smooth of packets will be 

disrupted by retransmissions. Most of ad hoc networks protocols have been designed 

assuming that the underlying technology was bidirectional (Symmetrical Network). As an 

example, a set of nodes which are connected through a single physical network assume 

they can exchange routing information with each other as shown in figure (2). Exchanging 

routing information enables the discovery of the underlying network topology, and the 

routing traffic via discovered networks.  

  

                                                                            Routing Information                    

                                        

                       

          Upstream Nodes                                                                         Downstream Nodes 

                            Fig (2): A Symmetric Network 

However, if the link connecting these nodes is unidirectional (Asymmetrical Network), we 

can say that all downstream nodes have received only capabilities and therefore cannot 

send routing information to upstream nodes as shown in figure (3). As a result, upstream 

nodes cannot discover downstream network topologies dynamically and will therefore 

never forward information towards them.  

                                                  Routing Information                    

                                        

                      

                 Upstream Nodes                                                                    Downstream Nodes 

Fig (3): An Asymmetric Network 
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Generally, in the presence of a unidirectional link, many routing protocols, will fail to 

operate and lose to send data therefore, to provide full network connectivity we need to 

make the node to discover if the link is a bidirectional or unidirectional link before 

sending over any data. 

II. MDVZRPA: MOTIVATION 

A node in MDVZRPA has a flat view over the entire network when it joins the 

network and broadcasts a beacon message for the first time. It is easy to get ready 

multipath to each destination in the entire network by unicasting and receiving routing 

information (full dump) from all its bidirectional neighbours to build its own routing table. 

Since all nodes proactively store local routing information, route requests can be more 

efficiently performed without querying all the network nodes. In case of receiving an error 

message regarding to a broken active link or non reachable node, MDVZRPA uses an 

alternative path getting technique to get a suitable alternative path (Best metric) among the 

multipath that were stored into the node routing table, instead of  wasting time in route 

repair or route request every time. Also MDVZRPA uses a field called Symmetric to 

distinguish between unidirectional and bidirectional links. Once a node receives the Hello 

message from a new node, it adds an entry in its routing table to this destination (new 

node) assuming the link between them as an unidirectional link by resetting the Symmetric 

field=0. The Symmetric field is set to 1 when a routing information is received from the 

new node, then the link is considered as a bidirectional link.    

III. MDVZRPA: ZONE RADIUS IN AN ASYMMTRICAL NETWORK 
 

 The zone radius is the distance in number of hops from the specific node to the last 

node in its zone. A routing zone is defined for each node separately, and the zones of 

neighboring nodes overlap. The routing zone has a radius R expressed in hops. The zone 

thus includes the nodes whose distance from the node in equation is at most R hops. 

Figure (4) shows a new node (i.e. node 7), and its routing zone when it joined the 

network. Each node has only one hop from the new node we call it a 1
st
 hop neighbour 

where radius R =1 (i.e. 4, 5 and 6), while any node has 2 hops from the new node, we call 

it 2
nd

 hop neighbour where R =2 and so on. If a node has number of hops (Distance) from 

source node = zone radius, then we call it a peripheral node (i.e. 2, 3). All the rest nodes 

which have distance > R  (i.e. 1) are called out of zone nodes.  

 
 

Fig (4): Zone Radius, where R=1, 2 or 3 in an Asymmetrical Network 
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IV. MDVZRPA: ROUTING INITIALIZATION  

 

During the initialization stage as each node joins the network, it adds an entry to itself 

in its routing table, and broadcasts a periodic beacon (Hello message). In figure (5) we 

assume node 6 is a new node joined an asymmetrical network, where the node zone radius 

is 2.  

 

 
 

Fig (5): A Hello Message along an Asymmetrical Network 

           

A node which receives the Hello message (i.e. 4, 5) checks if it has a direct route (hop=1) 

to the Hello message sender. If so, it updates the entry regarding to the next Hello 

message expecting time (time-out field), and discards the Hello message (the neighbor is 

still there). Otherwise, it adds a new route entry where the route destination and 1
st
 hop 

fields are the address of the node that sent the Hello message as shown in Table (1), while 

the link- id field is the Hello message receiver - Hello message sender addresses (4-6, 5-

6), sets number of hops field (Metric) to 1, sets time-out field, and resets the Symmetric 

field assuming the link between them as an unidirectional link (unusable) at the 

beginning. Then, it unicasts its routing information to the new node (Full dump), if  a full 

dump back message is received from the new node, the node sets the  Symmetric field 

considering the link between them as a bidirectional (usable) and broadcasts an Update 

route message to its neighbors regarding to the new node. Table (1) shows new routes to 

the new node (6) added by node 4 and 5 in their routing table respectively. 

 

     Node 4: 
 

Destination 1st hop 2nd hop Metric Link-id Symmetric 

6 6 - 1 4-6 0 

 

     Node 5: 
 

Destination 1st hop 2nd hop Metric Link-id Symmetric 

6 6 - 1 5-6 0 

 

 

Table (1): Routes are obtained after receiving a Hello message 
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In case of node 4, the link 4-6 is unidirectional as shown in   figure (5). Therefore, node 6 

will not receive routing information (full dump) message from node 4, it is still unknown 

for node 6. Hence, node 6 will not send back its routing information to node 4. 

 

In case of node 5, the link 5-6 is bidirectional as shown in     figure (5). Therefore, node 6 

will receive the routing information (full dump) from node 5, and unicasts  its routing 

information (full dump) to node 5. Node 5 sets the Symmetric field, considering the link 

between them as a bidirectional and broadcasts an Update message regarding to the new 

node to its  1
ST

 hop neighbors (node 2, 4) as shown in figure (5), where these nodes are 

the 2
nd

 hop neighbors of the new node using node 5 as a 1
st
 hop. 

 

The new node 2
nd

 hop neighbours add an entry in their routing tables and discard the 

Update message, where the destination and 2
nd

 hop fields of the entry are the address of 

the node that sent the Hello message (node 6), the 1
st
 hop field is the address of the node 

that sent the Update message (node 5), while the link-id is the same as the link id included 

in the Update message 5-6, and the metric is incremented by 1 as shown in table (2). The 

Update message is discarded and not propagated when the metric equals the zone radius 

(R). 

 

     Node 2: 
 

Destination 1st hop 2nd hop Metric Link-id Symmetric 

6 ! 6 2 !-6 " 

 

   Node 4: 
 

Destination 1st hop 2nd hop Metric Link-id Symmetric 

6 6 - 1 4-6 0 

6 5 6 2 5-6 1 

 

Table (2): Routes are obtained from the Update message sent by node 5 

 

 

Further more, Node 6 continues to broadcast a periodical beacon (Hello) from time to 

time. Each time node 5 receives this beacon, it finds a direct route (hop=1)  in its routing 

table to node 6 where the link is a bidirectional (usable), therefore, it only updates the 

entry belongs to node 6 regarding to the next Hello message expecting time (time-out 

field) and discards the message. Also, node 4 finds a direct route (hop=1) to node 6 where 

the link is unidirectional (unusable), therefore, it checks if it has indirect route to node 6. 

If indirect route is found, such as in this case where node 4 has a route to node 6 through  

node 5 as shown in table (2), it updates the entry belongs to node 6 regarding to time-out  

field and  unicasts a routing information message to node 6 using that route. Otherwise, it 

only updates the time-out field and discards the message. 

 

 Once node 6 received the routing information of node 4, it adds a direct route where 

Symmetric field =1(useable), without paying attention to the next Hello message 

expecting time (time-out field) of node 4. In other words, node 6 doesn’t consider node 4 

as a neighbor.  
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The new node immediately starts to build its routing table entry by entry, excluding any 

similar, long and joint paths, once received a routing information message. Tables 3-8 are 

the routing tables of the entire network nodes after the new node joined the network. 

 
Destina

tion 

1st 

hop 

2nd 

hop 

Metric link-

id 

Symme

tric 

Notes 

1 1 - 0 1-1 1 Initialization 
2 2 - 1 1-2 1 … 

3 3 - 1 1-3 1 … 

4 2 4 2 2-4 1 Multipath 

4 3 4 2 3-4 1 Multipath 

5 2 4 3 4-5 1 Update 

 

   Table (3): Routing table of node 1 

 

Destina

tion 

1st 

hop 

2nd 

hop 

Metric link-

id 

Symme

tric 

Notes 

1 1 - 1 1-2 1 … 

2 2 - 0 2-2 1 Initialization 
3 1 3 2 1-3 1 … 

3 4 3 2 3-4 1 … 

4 4 - 1 2-4 1 … 

4 5 4 2 4-5 1 … 

5 4 5 2 4-5  … 

6 5 6 2 5-6  Update 

       

Table (4): Routing table of node 2 after receiving the Update messages 

 

 

Destina

tion 

1st 

hop 

2nd 

hop 

Metric Link

-id 

Symme

tric 

Notes 

1 1 - 1 1-3 1 … 

2 1 2 2 1-2 1 … 

2 4 2 2 2-4 1 … 

3 3 - 0 3-3 1 Initialization 
4 4 - 1 3-4 1 … 

5 1 2 3 2-5 1 … 

5 4 5 2 4-5 1 … 

 

Table (5): Routing table of node 3 after receiving the Update messages 

 

 

Destina

tion 

1st 

hop 

2nd 

hop 

Metric Link-id Symme

tric 

Notes 

1 2 1 2 1-2 1 …. 
1 3 1 2 1-3 1 …. 
2 2 - 1 2-4 1 …. 
3 3 - 1 3-4 1 …. 
4 4 - 0 4-4 1 Initialization 
5 5 - 1 4-5 1 …. 

6 5 6 2 5-6 1 Update 

6 6 6 1 4-6 0 Hello 

 

Table (6): Routing table of node 4 after receiving the Update messages 
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Destina

tion 

1st 

hop 

2nd 

hop 

Metric Link-id Symme

tric 

Notes 

1 2 1 2 1-2 1 … 

2 2 - 1 2-5 1 …. 
3 4 3 2 3-4 1 …. 
4 4 - 1 4-5 1 …. 
4 6 4 2 4-6 1 Update 6 

5 5 - 0 5-5 1 Initialization 
6 6 - 1 5-6 1 Hello 

       

Table (7): Routing table of node 5 after receiving the Update messages 

 

 

Destina

tion 

1st 

hop 

2nd 

hop 

Metric Link-id Symme

tric 

Notes 

1 5 2 3 1-2 1 Full dump 5 

2 4 2 2 2-4 1 Full dump 4 
2 5 2 2 2-5 1 Full dump 5 
3 4 3 2 3-4 1 Full dump 4 
4 4 - 1 4-6 1 Full dump 4 

4 5 4 2 4-5 1 Full dump 5 
5 5 - 1 5-6 1 Hello 

5 4 5 2 4-5 1 Full dump 4 
6 6 - 1 6-6 1 Initialization 

 

Table (8):Rrouting table of the new node (6) after receiving the full dump 

 

 

From the previous tables we can see that each node has one or more entries for each 

destination in the network, except node 1 and 3. They have no routes to node 6, because 

both are outside of node 6 routing zone. Therefore, both should initiate a route request on 

demand when need to send data to node 6. 

 

V. MDVZRPA: ROUTE ON DEMAND  

 

If a node needs to communicate with another node in the network and it has no route 

available in its routing table to that node because it is outside its routing zone, in this 

example we assume that node 3 as a Source node needs to communicate with node 6 as a 

Destination. The S node broadcasts a route request message RREQ with the D address to 

find a route to the required destination, as shown in figure (6). A route can be determined 

when the route request RREQ reaches a node that offers accessibility to the destination, 

(e.g., one of the destination’s 1
st
 hop neighbours node 1, 4 or one of the peripherals nodes 

2, 5). As shown in figure (6) and from table (6), node 4 has two routes in its routing table 

to the Destination. The shortest route is in 1 hop distance from node 6, where link-id is 4-

6, but it is asymmetric link (Symmetric=0), therefore it is useless. The second route is 

longer, in 2 hops distance from node 6, where link-id is 5-6. It is better because the link is 

symmetric (Symmetric=1). Also from table (4) node 2 has a route in 2 hops distance to the 

destination. The route is made available by unicasting a RREP back to the source node 

and is written in its routing table. The source node has got two routes to the required 
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destination the first rout in 3 hops distance through node 4 as a 1
st
 hop, node 5 as a 2

nd
 hop 

where the link-id is 5-6. The second route in 4 hops distance through node 1 as a 1
st
 hop, 

node 2 as a 2
nd

 hops and the link-id is 5-6.  But because the two routes are node joint 

(node 5) and link joint (5-6), then node 3 chooses only one of them, the shortest one as 

shown in table (9). 

 

 
         

Fig (6): Route on Demand along an Asymmetrical Network 

 

 

Destina

tion 

1st 

hop 

2nd 

hop 

Metric Link-id Symme

tric 

Notes 

1 1 - 1 1-3 1 … 

2 1 2 2 1-2 1 … 

2 4 2 2 2-4 1 … 

3 3 - 0 3-3 1 Initialization 
4 4 - 1 3-4 1 … 

5 1 2 3 2-5 1 … 

5 4 5 2 4-5 1 … 

6 4 5 3 5-6 1 RREP 
 

Table (9): Routing table of node 3 after RREP message 

 

VI. MDVZRPA: BROKEN LINKS DISCOVERY 

 

A node discovers the broken link between itself and its neighbour using the time-out 

field. It is the time in which the node expects to receive a Hello message from that 

neighbor confirming that it is still exists (reachable).This field is set to the expected next 

hello message time once the node received the Hello message from that neighbor. If the 

node didn’t receive a Hello message in the expected time then, the node considers that 

neighbor unreachable. In this case the node assigns any entry in its routing table where the 

destination or 1
st
 hop fields are equal to the address of that neighbor as a broken link, by 

setting the Metric field to infinity as shown in tables (10, 11), and then generates and 

broadcasts a route error message (RERR) carries the link-id of the broken link. Each node 

receives this message, checks if it has any entry with the same link-id to assign it as a 
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broken link as shown in tables (12, 13). The next section is an example for node 

movement and broken link in details. 

 

VII. MDVZRPA: NODE MOVEMENT 
 

Node movement is one of the biggest challenges in MANET, where mobile nodes 

cause broken links as they move from place to place. Any node that discovers a broken 

link should generate and broadcast a forwarded route error RERR, where the nodes update 

their routing tables regarding to that error message. In figure (7), we assume that node 6 

has moved away, both node 5 and 6 discovered that the link-id between them is broken, 

each node (5, 6) searches for the direct route to the other in its routing table to get its link-

id  and assigns it as a broken link, assigns any route it has where the 1
st
 hop field is the 

non reachable node as shown in tables (10, 11) and then, broadcasts RERR message 

carrying the non reachable node address with the link-id  (5-6) to be assigned by any 

neighbor it has a route carrying the same link-id in its routing table. 
               
 

 
 
 

Fig (7) Route Error Message along an Asymmetrical Network 

 

Each node receives RERR message, assigns any entry in its routing table with the same 

link-id as shown in tables(12, 13), and rebroadcasting the same error message RERR and 

so on, unless the node has no route carrying that link-id, in this case it discards the RERR 

message.    

 
Destina

tion 

1st 

hop 

2nd 

hop 

Metric Link-id Symme

tric 

Notes 

1 2 1 2 1-2 1 … 

2 2 - 1 2-5 1 … 
3 4 3 2 3-4 1 … 
4 4 - 1 4-5 1 … 
4 6 4 # 4-6 1 Deleted 

5 5 - 0 5-5 1 Initialization 
6 6 - # 5-6 1 Deleted 

 

Table (10): Routing table of node 5 after discovering the broken link 
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Destina

tion 

1st 

hop 

2nd 

hop 

Metric Link-id Symme

tric 

Notes 

1 5 2 # 1-2 1 Deleted 

2 4 2 2 2-4 1 Full dump 4 
2 5 2 # 2-5 1 Deleted 

3 4 3 2 3-4 1 Full dump 4 
4 4 - 1 4-6 1 Full dump 4 

4 5 4 # 4-5 1 Deleted 

5 5 - # 5-6 1 Deleted 

5 4 5 2 4-5 1 Full dump 4 
6 6 - 1 6-6 1 Initialization 

 

Table (11): Routing table of node 6 after discovering the broken link 

 

Destina

tion 

1st 

hop 

2nd 

hop 

Metric link-

id 

Symme

tric 

Notes 

1 1 - 1 1-2 1 … 

2 2 - 0 2-2 1 Initialization 
3 1 3 2 1-3 1 … 

3 4 3 2 3-4 1 … 

4 4 - 1 2-4 1 … 

4 5 4 2 4-5 1 … 

5 4 5 2 4-5  … 

6 5 6 2 5-6  Deleted 

 

Table (12): Routing table of node 2 after receiving the Update messages 

 

 

Destina

tion 

1st 

hop 

2nd 

hop 

Metric Link-id Symme

tric 

Notes 

1 2 1 2 1-2 1 …. 
1 3 1 2 1-3 1 …. 
2 2 - 1 2-4 1 …. 
3 3 - 1 3-4 1 …. 
4 4 - 0 4-4 1 Initialization 
5 5 - 1 4-5 1 …. 

6 5 6 # 5-6 1 Deleted 

6 6 6 1 4-6 0 Hello 

 

Table (13): Routing table of node 4 after receiving the RERR message 

 

VIII. CONCLUSIONS AND FUTURE WORK: 

 

     In this paper, we proposed MDVZRPA a multipath routing protocol for asymmetric 

mobile ad-hoc networks. It is a development to our previous protocol MDVZRP [8] for 

symmetric mobile ad-hoc networks, which is extend to our MDSDV [3] protocol. 

MDVZRPA is a proactive for all destinations inside the routing zone and reactive for 

destinations outside the routing zone, supports both bidirectional and unidirectional links. 

It uses broadcast and unicast techniques to send the packets over both links. Nodes create 

their routing tables to save multi optimum paths using Hello and Full dump messages, 

where maximum number of optimum routes depends on number of neighbors of the 
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source node. Nodes update their routing tables using Update route, Route request (RREQ), 

Route replay (RREP) and Route Error (RERR).  

 

 If a node wants to initiate communication with a node to which it has no route, 

MDVZRPA will try to establish such a route using route request mechanism. The protocol 

allows sending packets by alternative paths in case of the primary path breaks; when a 

node discovers a broken link to one of its neighbors, broadcasts an error message using 

the link-id to identify the unreachable node. Any node receives the broken link error 

assigns the right route to that node using the link-id included in the error message as 

unusable route (#).  MDVZRPA gives the node ability to get information from any route 

pass through it. 

 

 In our future work, we are going to evaluate and compare MDVZRPA to DSDV, 

AODV and ZRP according to the following evaluation metrics (data throughput, packet 

delivery ratio, routing overhead and average packet delay).  
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Guided Subsystem Performance Assessment 
Architecture for Grid Service 

 
 

Jin Wu, Yichao Yang, Yanbo Zhou, Linghang Fan and Zhili Sun* 

 
 

Abstract 
In a typical Grid scenario, multiple component services are 
autonomously federated into a composite Grid service based on the 
workflow expressed by process description models. For the simplicity 
to resource sharing, Grid services only expose a standard interface to 
users. The encapsulated appearance of Grid service hides almost all 
system details from users. However for some applications, when users 
want to know more about the performance of the service in planning 
phase, problem emerges. They simply have not means in knowing 
how well the system will cope with their demands. Therefore, we say 
that once the workflow is expressed by the user, performance 
assessment service should be in place to estimate the likeness of 
under-performing of the service and let users be notified before their 
subscription decision. Since a Grid service always involve multiple 
service provides and its failure may comes from different sources, 
Grid performance assessment aims to consider all involved factors and 
give an overall likeness of under-performing estimation. We believe 
current Grid infrastructures do not integrate adequate performance 
assessment measures to provide such function. Therefore, we present 
in this paper the architecture of Guided Subsystem Approach for Grid 
performance assessments. Based on this architecture, the performance 
assessment measures can be given by the Grid platform to extend its 
functionality.  

 

1. Introduction  
More and more applications are applied on the Grid infrastructure. However, the lack 
of performance indications becomes an obvious obstacle for the continuously 
promotion of the Grid. User’s sceptics in service quality significantly hold back the 
efforts of putting more applications onto Grid: it is hard to convince users to relay on 
the Grid infrastructure before they have been clearly notified with the service quality 
they will receive, especially when all Grid services are encapsulated with only a 
standard interface be exposed. Such a problem was caused by the nature of Grid. The 
Grid middleware hides system details by allowing users to access service through a 
portal without recognising the details of resource providers. On one hand, a 
standardised resource usage interface provides an easy access to remote resources. On 
the other hand, the system details are hidden behind for user to aware the performance 
of Grid services. This paper studies the performance assessment architecture to relief 
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the problem. For measuring perception, performance assessment process is introduced 
in the planning phase of Grid applications. The performance assessment is a user-
centric effort. It collects the requirement from the user, and feedbacks how well the 
system will cope with the user’s requirement after examine related Grid components. 
This component does not try to improve the performance of individual component, 
but assist the users to select to services more wisely by enabling the comparison 
among available services providers on like-for-like bases.  
 
Theoretically, two approaches can be used to obtain the performance assessment of an 
application: the user initiated assessment, and the infrastructure based assessment. 
The user initiated assessment approach evaluates the performance of an application by 
users’ own efforts. The services from all providers are trialled one by one, and their 
performances are documented for like-for-like comparisons. While this approach is 
easy to use, its utility is generally limited by its overhead, accuracy, and management 
concerns. For instance, a large number of users making independent and frequent 
assessment trials could have a severe impact on the performance of services 
themselves. Furthermore, the assessment abilities at user-ends are always limited 
which weakens the accuracy of assessment results. More important still, application 
providers might not agree to open their systems for trials for a serial of economical 
and security concerns. Ideally, dedicated modules attached to service providers should 
be in place while its assessment results could be made available, with low overhead, 
to all perspective users. This is the basic motivation of infrastructure based 
performance assessment for Grid services. Figure 1 illustrates the relationships behind 
the infrastructure based performance assessment approach in Grid environment. User 
subscribes to services in Grid environment instead of directly calling physical 
components.  
 

 
Figure 1. Infrastructure Based Performance Assessment 

 
A performance assessment service is in place to evaluate the performance of general 
Grid services. It relies on an infrastructure to obtain the running status of physical 
components which could support the Grid services. When a user wants to know the 
possible performance of a given service, the performance assessment service is able to 
give the support to expected performance based on the physical component 
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performance assessment and workflow of the service. By applying the infrastructure 
based performance assessment approach, the following advantages can be gained:  

• Physical components are opened for assess to a certain number of authorised 
assessment programs;  

• Performance assessment results are shared among multiple users;  

• Users receive swift reply of service performance estimation. 
This approach settles the efficiency and security concerns.  
 
Current researches have limited emphasises on this topic. Previous researches have 
discussed the use of infrastructure to obtain data transmission performance between 
Internet hosts. A simple protocol for such a service, SONAR, was discussed in the 
IETF as early as February 1996 [2], and in April 1997 as a more general service 
called HOPS (Host Proximity Service) [3]. Both of these efforts proposed lightweight 
client-server query and reply protocols similar to the DNS query/reply protocol. Ref 
[4] proposed a global architecture, called “IDMaps”, for Internet host distance 
estimation and distribution. This work propose an efficient E2E probing scheme that 
satisfies the requirements for supporting large number of client-server pairs. However, 
the timeliness of such information is anticipated to be on the order of a day and 
therefore, not reflect transient properties. Furthermore, this work can only assess the 
transmission delay among Internet host, this could be an underneath support of 
performance assessment, but this work did not touch the performance issue related to 
users. The topic of server selection has also been touched. Ref [5] proposed passive 
server selection schemes that collects response times from previous transactions and 
use this data to direct client to servers. Ref [6, 7] proposed active server selection 
schemes. Under these schemes, measurement to periodically probe network paths is 
distributed through the network paths are distributed throughout the network. Based 
on the Round Trip Time that is probed, an estimated metric is assigned to the path 
between node pair. Ref [8] study a scenario where multimedia Content Delivery 
Network are distributing thousands of servers throughout the Internet. In such 
scenario, the number of tracers and the probe frequency must be limited to the 
minimum required to accurately report network distance on some time scale. Our 
paper extends the research by combing the above two idea together - an assessment 
infrastructure is in place to assist the application selection. The novelties of this 
research lie on: a) the assessment infrastructure has been extended to support 
performance assessment other than network performance metrics assessment; b) a 
general architecture considering both application layer and transmission network 
performances are proposed; and c) Internet application users will be notified with 
possible performance before their executions. The reminder of the paper are organised 
as follows. Section 2 gives an architecture level study of the performance assessment. 
Section 3 studies the detailed procedures for the performance assessment identified in 
Section 2.  Section 4 presents a case-study where the analysis in Section 3 is put into 
practice. Section 5 gives the discussions and future works.  

2. Architectural Level Study to 
Performance Assessment 

An architectural level study of performance assessment is given in this section. 
Performance assessment is used to find out the degree of likeliness by which the 
performance of a Grid service fulfils the user’s requirements. It is expected that 
through performance assessment, users are facilitated with the ability to aware the 
quality of the Grid service before subscriptions. As discussed above, the Grid service 
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suffers uncertainties in terms of service qualities due to its distributed and service-
oriented nature. In many cases, multiple component services from different 
administration domains are federated into a composite service which is finally 
exposed to users. Needless to say, the performances of related component services 
affect the performance of the composite service that is directly visible to users.  
 
The accuracy, efficiency, and scalability are main concerns for the performance 
assessment of Grid services. Generally, Grid could be large scale heterogeneous 
systems with frequent simultaneous user accesses. Multiple performance assessment 
requests must be employed to assess performance in a timely and overhead efficiency 
manner. Apparently, the larger and more complex the system, and the more varied its 
characteristics, the more difficult it becomes to conduct an effective performance 
assessment. Subsystem-level approach is a solution to overcome the scalability 
problem to performance assessment over large scale systems. As its name suggests, 
the Subsystem-level approach accomplishes a performance assessment by developing 
a collection of assessments subsystem by subsystem. The rationale for such an 
approach is that the performance meltdown that user experienced will show up as a 
risk within one or more of the subsystems. Therefore, doing a good job at the 
subsystem level will cover all the important area for the whole system.  
 
The following observations identify the limitations of the approach.  

• Independent subsystem performance assessment tends to give static 
performance and assume in the way that the upcoming invoking request does 
not carry out a meaningful impact to the subsystem performance. But a 
subsystem can exhibit differently when the additional invoking request is 
applied. Without a dynamic performance assessment which takes the 
characteristics of both invoking request and subsystem, the performance 
assessment result has a systematic inaccuracy.   

• Independent subsystem performance assessment is prone to variance in the 
way performance metrics are characterised and described. Without a 
common basis applied across the system, subsequent aggregation of 
subsystem results is meaningless or impossible to accomplish. A 
consequence is the inevitable misunderstanding and the reduced accuracy of 
performance assessment.  

• Subsystem A’s analysts can only depict the operation status and risk of 
Subsystem A, but it may not have an accurate understanding of Subsystem 
A’s criticality to the overall service performance. As viewed from the 
perspective of the top level performance assessment, the result from 
subsystem can be wasted effort assessing unrelated performance metrics, or 
subsystem performance metric that crucial to the overall performance 
assessment is not measured.  

Given the weakness of the conventional subsystem performance assessment 
approaches, we propose the Guided Subsystem Approach to performance assessment 
as an enhancement to conventional approaches.  
 
The main idea of the Guided Subsystem Approach is to introduce a user-centric 
component that interprets the user’s assessment requests and assessment function of 
subsystems. It conducts macro-level pre-analyse efforts. The top-down efforts are 
enforced to translate those performance assessment requests and transmit to the 
subsystem assessment modules. Such the dynamically generating of assessment 
requests to subsystem helps to prevent mismatching between user’s assessment 
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requirements and the assessment actions applied onto the subsystems. The Guided 
Subsystem Approach takes the advantage of both top-down and subsystem 
approaches while presenting better efficiencies, consistencies, and systematic 
accuracies. Furthermore, the Guided Subsystem Approach has top-down 
characteristics together with characteristics from subsystem. The user centric 
interpretation components and subsystem performance assessment components can be 
designed and implemented separately.  
 
Figure 2 gives an architectural level flow diagram for Guided Subsystem Approach 
generally applicable to the performance assessment process of most Grid services. 
Macro processes and sub-system processes are applied respectively to user-centric 
and system-centric assessments.  

 
Figure 2. Architectural Level Process for Guided Subsystem Assessment 

 
First, the user-centric assessment is used to identify and document a description of the 
user’s expectations to include performance indicators of the target service. The 
Application Performance Indicators Table is compounds of performance attributes 
that can be used to depict, in a standard way, the performance a user expects from the 
target service. This activity is named as Define Target Service Expectations. As part 
of this activity, the user-centric performance assessment module gets the Service 
Performance Attributes Template and completes the attributes’ definitions according 
to the user’s performance expectations to the target service. The Service Performance 
Attributes Template is authored by system analysis of applications, and could be, 
nevertheless, updated thanks to users’ feedbacks. However, the management and 
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standardisation of the Service Performance Attributes Template is outside the scope 
of this research. Without loss of generality, we simply consider standard Service 
Performance Attributes Template can be given by a third party generalised service 
when a target service is identified. The next step is to generate the Crucial Resource 
Requirement Table which depicts the performance requirement of each subsystem 
participate the business process of the target service. This activity indicates local 
constraints of resources based on the analysis of the global constraints given by the 
previous activity and the Scenario for Business Process. A Scenario for Business 
Process is a set of interactions among components triggered by specific input 
stimulate to make the business process of a service possible. Then, the crucial 
resource requirements are transferred to sub-systems for analysis.  
 
When a Crucial Resource Requirement Table authored by the Marco process is 
received by the system-centric assessment modules, sub-system assessment process is 
activated. The Assess Under-performing Risk activity is used to measure how well the 
sub-system, usually another encapsulated component service, meets the resource 
requirement from the composite Grid service. The resource requirement can be read 
from the Crucial Resource Requirement Table. Also, it is assumed that the resource of 
the component can be obtained by a local agent who forwards the component’s 
operation status to the Component Performance Measurements Table. The assessment 
result in the form of under-performing probability is forwarded to the Component 
Under-performing Probability Table and transmitted back to user-centric assessment 
module. The activity Aggregate Quality Analysis collects all performance 
measurements from sub-systems and gives performance assessment result.  
 
It is expected that the Guided Subsystem Approach for Grid service performance 
assessment can improve the performance assessment in terms of scalability, accuracy 
and consistency.  

3. Guided Subsystem Performance 
Assessment 

We discuss in this section how to measure the performance of a given Grid service by 
applying the Guided Subsystem Approach. Basically, when user subscribes to a Grid 
service, it expects the Grid service to be delivered with some quality measures. Once 
the performance of the Grid service is worse than the minimum acceptable quality, 
then the Grid service is viewed as under-performing. As previously discussed, a Grid 
service may invoke multiple functional components spread across multiple 
administration domains. Performance malfunctioning of a Grid application takes 
place when related functional components supporting the application do not meet the 
user’s requirements. We show in this section how the assessment be done following 
the process given in the last section.  

 3.1 Definition of Target Service Expectation  
For an assessment infrastructure, it needs to give performance indications after users 
express their expectations to the target Grid service. Users can have diverse 
performance expectation for a Grid service. Their performance expectations should be 
expressed in a standardised way to let the assessment infrastructure learn the need of 
users. A performance indicator is defined to notify users the result of performance 
assessment. The performance indicator should have pragmatic meaning and allow 
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user to perform like-with-like comparison between similar Grid services delivered 
from different providers.  
 
The concept of Expected Cost of Under-performing (ECU) is introduced in measuring 
the potential cost a user might require to pay for the lost due to performance 
dissatisfactions. ECU is a predicted value given by the performance assessment 
process. An accurate prediction of ECU can be used as an indication of performance. 
ECU is tightly coupled with performance: a lower ECU will result as better 
performance, and a higher performance will bring more risks. The value of ECU 
passes back to users to assist users in two aspects during the planning phase of remote 
application:  

• ECU can be used as an indication to compare Grid services from different 
providers on like-with-like bases. One application with lower ECU can lead 
to a better performance than others;  

• ECU measurement can help users to aware the potential risk of performance 
dissatisfaction for target Grid service.  

 
For the purpose of measuring the ECU of a target Grid service, three types of inputs 
need to be identified:  

• Set of Performance Malfunctioning (SPM) is a set containing any possible 
performance malfunctioning feature by which Internet application users 
might possibly be experienced. It is a framework of discernment attached to 
applications. The descriptions of this input identify the differences between 
applications.  

• Consequence of Performance Malfunctioning (CPM) measures the 
damages every particular performance malfunctioning feature could possibly 
cause. It depicts the users’ expectations of performance towards the 
application.   

• Probability of Performance Malfunctioning (PPM) measures the 
possibility of performance malfunctioning appears under a given framework 
of discernment. This input depicts the how the underneath system reacts to 
the invoking requests.  

The ECU of a target Grid service can be given upon the collection of the above three 
aspects of inputs.  
 
To obtain the SPM is the first step for ECU measurement. The performance 
malfunctioning is a feature of an application that precludes it from performing 
according to performance specifications, a performance malfunctioning occurs if the 
actual performances of the system are under the specified values. SPM is usually 
defined when a type of Grid service is composed. When a type of Grid service is 
identified, its standard SPM can be obtained. Different types of Grid services could 
lead to different SPMs. Basically, SPM is authored by system analysis, and could be, 
nevertheless, updated thanks to users’ feedbacks. However, the management and 
standardisation of SPM is outside the scope of this research. Without loss of 
generality, we simply consider standard SPMs can be given by a third party 
generalised service when a use-case is presented, where the SPM of service u is 
denoted as SPMu. For a service u with a standard SPM including n malfunctioning 
type, there exists },...,{ 1 nu ssSPM = , which can also be denoted as an n-dimensional 

vector
uMPS

!
, ),...,( 1 nu ssMPS =

!
.  
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Identifying the severity of performance malfunctioning is another important aspect of 
ECU measurement. CPM is a set of parameters configured by users in representing 
the severity each performance malfunctioning feature could possibly cause. Define a 
function 

><
ux SPMuser

p representing the CPM configuration process for the user userx on 

the framework of discernment of use-case u, SPMu. Denote this CPM as a n-
dimensional vector ),.,,.,( 1 nxu cccMPC =

!
, where cx is the cost of damages when the xth 

performance malfunction exists. Then, for SPMsx ∈∀ , ),0[ +∞∈∃ xc  satisfying   

xxSPMuser
csp

ux
→

><
:  

It is users’ responsibility to configure the CPM. In many cases, policy based 
automatic configurations are possible in order to make this process more friendly to 
users.  
 
The third part of performance assessment is to find out the performance of the 
invoked system in terms of under-performing possibility when an application scenario 
is applied. The performance of the invoked system relates to the ability of physical 
resource that the system contains, and their managements. An n-tuple, PPM, is 
defined to measure the performance malfunctioning probability of a given function 
under a scenario. Denote sx as a performance metric satisfying 

ux SPMs ∈ . For a use-

case u, suppose the specified performance values as SPMu’, where }',...,'{' 1 hu ssSPM = . 

The scenario e is executed to apply the use-case u. px is defined as the possibility of 
performance malfunctioning that exhibited by the xth performance metric, 
where )'Pr( xxx ssp <= . Then, we have the probability of performance malfunctioning 

for scenario e, where ),...,( 1 ne ppMPP =
!

. The PPM related to three factors: a) the 

ability and usability of components; b) importance of components to overall 
performance; and c) invoking frequency of components.  
 
SPM and CPM can be given by the user, while PPM needs to be obtained from sub-
systems that compose the target Grid service.  

3.2 Consequence Analysis for Performance 
Assessment 

Consequence analysis investigates the dependency relation between the target Grid 
service and subsystems that composite the service. As mentioned above, multiple 
independent component Grid services will be invoked to deliver a Grid service to 
user. It is important to explicitly give the performance requirement of each component 
involved. Suppose there is a target Grid service A, it is expected to deliver a service to 
satisfy the performance requirement R. We denote the performance of the service A as 
P(A), and require RAP ≥)(  to be satisfied in run time. The service A invokes a set of 

composite services, denote as X={X1, …, Xn}. The task of consequence analysis is to 
find out a set of performance requirements R(X)={R1, …, Rn}, for every composite 
service Xi, XXi ∈ , satisfies  

ii RXP ≥)( ,  then RAP ≥)(  holds.   

 
As mentioned above, there have dependency relations among services, where the 
satisfaction of one service’s performance may relay on the satisfaction of other 
upstream services’ performance. We then study how the performance requirement of 
individual composite service can be given. The back propagation method is used to 
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acquire the performance requirement of each composite service. The composite 
service that is closer to the user in workflow is analysed first for its performance 
requirement. Then, the performance requirement for the upstream service is 
generated. The upstream composite service will repeat the process until all composite 
services are reached.  
 
For example, as shown in Figure 3, the service Xi extends Xj and Xk. When the 
performance of the composite service Xi is  )()( ii xRXP ≥  holds, the component Xi 

will issue R(Xj) and R(Xk) to its upstream composite services respectively in order to 
indicate the minimum requirement for upstream service. Then upstream composite 
service repeats the procedure until the leaf of the dependency tree has been reached.  
 

 
Figure 3. Dependency Relation of Composite Services 

 

3.3 Subsystem Underperforming Risk 
Assessment  

We consider a Grid service can be decomposed as many independent component Grid 
services, which actually contains software and hardware resources, and performs a set 
of functional activities. A set of invoking methods is pre-defined in response to 
requests of users. Components are self-managed and their performances can be 
individually instrumented. No dependency relation exists among components: 
whereas any performance degradation of one component does not directly result as 
performance degradation of any other components.  
 

 
Figure 4. Performance Assessment Module for Component 

 
The performance assessment process of a component is as shown in Figure 4. 
Following the definition of components, each of them is operating independently, and 
can be invoked through standard interfaces. When a component x is invoked by a 
scenario, performance requirements can be derived from the invoking request. The 
performance requirement is defined as the minimum performance of the component to 
guarantee the overall satisfaction of the composite Grid service. Assessment modules 
are used to predict the deliverable performance of the component x, which stands for 
the performance that the component x can possibly provide in response to the 
invoking request. The under-performance state exists once the performance of 
deliverable is under the requirement of scenario. We aim to obtain the under-
performance probability in order to assess the performance of scenario. 
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A set of metrics is used to measure the performance of a composite service. Let a data 
structure <x,y> denote the yth performance metric of the component x. Let 
performance metrics R<x,y>(e) and P<x,y> measure the performance requirement by 
scenario e and the delivered performance for <x,y>. u<x,y>, }1,0{, ∈>< yxu , is the state 

value describing the healthy status of component x with regards to the performance 
metric <x,y>, and satisfies  

  
!"

!
#
$

≥=

<=

><><><

><><><

)( when ,0)(

)( when ,1)(

,,,

,,,

eRPeu

eRPeu

yxyxyx

yxyxyx  

An n-tuple, Ux(e), is used to depict the performance status of component x under 
scenario e.  

))(),...,(()( ,1, eueueU nxxx ><><=  

where n is the total number of all measurable metrics for the component x.  
 
The under-performing of components surely affect the performance of scenario. A 
performance malfunctioning assignment function is used to represent the degree of 
influence to SPM when a particular performance state exhibits in a particular 
component. A performance malfunctioning assignment function 

]1,0[: →SPMm  

is defined, when it verifies the following two formulas: 
1) ]1,0[)(, )( ∈∈∀ AmSPMA eUx

 

2) %
∈

≤
SPMA

eU Am
x

1)()(
 

where 
)(eU x

m  denote the performance assignment function during the performance 

state Ux(e). The higher value of )()( Am eU x

 denotes the higher influence of the state 

Ux(e) to the performance malfunctioning A, and vice versa. The m function can be co-
authored by system analysis and simulations. However, how to obtain the m function 
is not within the scope of this research. We consider the m function can be generated 
by a third party service.  
 
We then study how to assess the performance of a component.  
 
Let 

>< yxR ,'  denotes the predicted performance for <x,y>. For yx,∀ , there exist  

))('Pr()( ,,, ePRev yxyxyx ><><>< <= .  

Once the component x is invoked by scenario e, let v<x,y>(e) be the degree of likeliness 
of under-performance measured from <x,y>. The state of likeliness under-
performance of component x can be represented as an n-tuple,  

))(),...,(()( ,1, eveveV nxxx ><><= .  

 
A similarity measurement function  

]1,0[),(: →YXsim   

is defined, where ),...,( 1 nxxX = and ),..,( 1 nyyY =  are two n-tuples, and 

∏
=

−−=
n

k

kk yxYXsim
1

)1(),( .  

 Then, when Vx(e) can be obtained, the performance assignment function can be given 
as: 
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Then, we also can have  

%
Φ∈

×=
xx
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eU
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From this formula, the relationship between the performance of component x and 
SPM is given. 

3.4 Aggregate Performance Assessment  
Multiple components are involved when a scenario is being executed. To account for 
the probability of a resource competition of component manifesting itself into user-
end performance degradation, Dynamic Metrics (DM) is being used. Dynamic 
Metrics are used to measure the dynamic behaviour of a system based in the premise 
that active components are source of failure [2]. It is natural that a performance 
meltdown of component may not affect the remote instrumentation scenario’s 
performance if not invoked. So, it is reasonable to use measurements obtained from 
executing the system models to perform performance analysis.  
 
We study in the following of this section how can the value of Probability 
Performance Malfunctioning (PPM) of a scenario be given after the healthy measures 
of individual components are given. Beside the healthy statues of components, the 
frequency of invoking also affects the performance of scenario. Our methodology 
utilise a performance aggregation algorithm to provide the assessment of a scenario.  
 
As components are invoked they become active for a specific duration performing the 
requested functionalities. Once the invoking requests exceed the limit of what the 
component can handle, some invoking requests will receive a response of under-
performance. Therefore, there is a higher probability that, if an under-performance 
event is likely to exist in an active component, it will easily lead the scenario into 
malfunctioning.  
 
A data structure denoting the Component Status Description (CSD) is defined as 
follows: 

>=< )(),(),(,,)( )( MPSmedurationestartxieCSD xVxxx

!
 

where i and x are the unified identification of invoking request and component; 
startx(e) and durationx(e) are, respectively, the start time and expected execution 
duration of component x. Startx can be given by analysing the scenario that invokes 
the component. There are many technology can be found in literature analysing how 
to predict the execution duration of a task. For example, estimation of execution time 
can be done by using time stamps that are recorded in the simulation report. 
Therefore, we assume the value of durationx can be given by an external service.  
 
When the CSD of all components that involve in a scenario are given, the component 
coordination can be depicted by a Time-Component Representation graph. As shown 
in figure 5(a), the dark lines denote the active state of the corresponding component. 
In order to conduct the performance combination, the component coordination 
relation needs to be mapped to a Discrete Time Representation. Discrete Time 
Representation describes the state of active components in a serial of discrete time 
fragments, which satisfies: a) no overlay between any time fragments; and b) the 
coordination relation of components keep unchanged in any time fragment. Figure 5 
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gives an example of mapping the Time-Component Representation of a scenario to 
Time-Discrete Representation.  

 
Figure 5. Component Coordinated Relation of Scenario 

 
A data structure denoting the Scenario Status Description (SSD) is defined as follows: 

>∈=<
∈

"
!

)(

)( )(),(),(},)({,)(
jsetx

xVjj MPSmedurationestartjsetxxjeSSD  

where j is the serial number for the component; set(j) is the set of active components 
in the jth time fragment; startj(e) and durationj(e) are the start time and the time length 
for the jth time fragment when the scenario e is applied. Since all components are 
independently operated, the accumulated performance malfunctioning assignment can 
be given by the following formula: 
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Therefore, the PPM of a scenario e can be given as: 

∏
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where T(e) is total time required for scenario e.  
 
Finally, the performance evaluation of a Grid service can be given as  
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4. Showcase Scenario  
We use a remote-telescoping application over Grid to showcase the performance 
assessment process. Figure 6 shows the workflow of the application. The user invokes 
the remote-telescoping service, while the service contains four encapsulated services 
in distributed geographical locations. Data Collection service contains telescoping 
units and gathers data. Raw Data Process service is in place to deal with raw data 
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passed by Data Collection service, while Knowledge Based is to be accessed during 
the raw data processing. Display Module gets post processing data and provides 
interactive graphic interface to users.  
 

 
Figure 6. Workflow Model of Remote-telescoping Scenario 

 
The SPM of the scenario can be given by a third party service. We denote the SPM of 
the remote instrumentation application as shown in Table 1. For the sake of simplicity 
and more clearly in showing the assessment process, we only list a small number of 
performance malfunctioning types. This table can nevertheless be extended to further 
depict more details of Grid services. When the SPM is obtained from a third party 
service, the CPM can be set by users. The value of CPM are also given in Table 1.  
 

Malfunctioning type Description CPM 

SPM1 Image freeze 400 

SPM2 Display inconsistent  100 

SPM3 Data error 500 

SPM4 Stale data 200 

Table 1. Performance Indicator Table 
 

Therefore, the functional modules and their state space for under-performing are 
defined in Table 2. Components and the state space for under-performing are 
identified during the definition of the Grid service. m function can also be given by 
the analysis of history data and system analysis. In this showcase, we do not discuss 
how m assignment function is obtained, but assume the m assignment function value 
is given.  
 

Components  Description State Space for  
Under-performing 

m 
(SPM1) 

m 
(SPM2) 

m 
(SPM3) 

m 
(SPM4) 

I: No response  to req 0.8 0 0.1 0 
II: Data latency   0 0.4 0.4 0 

Data 
Collection  

(DC) 

Collect data from the 
field 

III: Data error 0.8 0 0.1 0 
Data Process  

(DP) 
Process raw data and 
output standard data 
format 

I: CPU overuse 0.2 0.1 0 0.1 

Knowledge 
Base  
(KB) 

Provide related 
knowledge for data 
processing 

I: Too many access 0 0.3 0.3 0.3 

Display 
Module  
(DM) 

Convert the standard 
data sheet into 
interactive graphic 

I: Too many users 0.2 0 0 0.2 
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Trans. link 1 
(TR1) 

Data transmission 
between DC and DP 

I: Overuse 0.1 0 0.1 0.1 

Trans. link 2 
(TR2) 

Data transmission 
between KB and DP 

I: Overuse 0 0.2 0.1 0 

Trans. link 3 
(TR3) 

Data transmission 
between DP and DM 

I: Overuse 0 0.2 0 0 

Trans. link 4 
(TR4) 

Data Transmission to 
User 

I: Overuse 0.2 0 0 0 

Table 2. m Assignment Function for Modules in Remote-telescoping 
 

Then, from the equation given in subsection 3.3, the value of the v-function can be 
given in the following table.  
 

Component State DC-I DC-II DC-III DP-I KB-1 

v function 0.0001 0.0002 0.0001 0.005 0.005 

Component State DM-I TR1-I TR2-I TR3-I TR4-I 

v function 0.005 0.01 0.01 0.01 0.02 

Table 3. v function 

 
Figure 7. Activation Time Graph of Components 

 
Furthermore, the activation relation of the components can also be obtained from the 
description of the Grid service, which is shown in Figure 7. Then the SSD can be 
given as:  

<1, {DC, TR1}, t0, 10, m0> 
<2, {DP, KB, TR2, TR3}, t1, 10, m1> 
<3, {DC, DP, DM, TR1, TR3, TR4}, t2, 10, m3> 
<4, {DP, DM, TR3, TR4}, t3, 10, m4> 
<5, {DM, TR4}, t4, 40, m5> 

 
We use the data in Figure 7 to construct a Dynamic Metric in analysing the 
performance. Then, the overall performance of the composite service can be 
calculated as shown in Table 4. Finally, the performance of the service can be 
measured.  
  

SPM CPM PPM Cost 

1 400 0.0044 1.76 

2 100 0.0014 0.14 

3 500 0.0010 0.50 

4 200 0.0014 0.28 

  Expected Cost of Underperforming (ECU): 2.68 

Table 4. PPM measurements 
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5. Conclusion and Future Works 
This paper describes the on-going research of the Grid service performance 
assessment. It explores the possibility of assessing the Grid service performance by 
using Guided Subsystem Approach. We prove that the approach is an effective way to 
measure the composite Grid services which include multiple loosely coupled 
component services. Top-down approach is used to capture the characteristics of user 
demands. Performance requirements are automatically translated and transferred to 
component services. Subsystem approach locally analyses the local available 
resources and demands, and concludes the possibility of under-performing for the 
local module. Dynamic metric is used to combine the performance assessment result 
together taking into account the importance of the component.  
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Abstract 

Broadcasting is a vital operation in mobile ad hoc networks (MANETs) 

and it is crucial to enhance its efficiency to ensure successful deployment. 

Although flooding is ideal for broadcast operations due to its simplicity and 

high reachability it suffers from high packet collision which can degrade 

network performance severely. Counter-based broadcast schemes have been 

introduced to alleviate the limitations of flooding. This study introduces an 

enhancement to counter-based broadcast by adjusting the threshold value and 
the Random Assessment Delay (RAD) using minimal neighbourhood 

information. Simulation results of this study show that the new dynamic scheme 

provide good performance levels compared to the existing solutions. 

 

1. Introduction 

A MANET (Mobile Ad hoc NETwork) is an autonomous system consisting of a set of mobile 

nodes that are free to move without the need for a wired backbone or a fixed base station. 
MANETs have several marked characteristics linked to their lack of a centralized infrastructure. 

First, MANETs are decentralized, with all mobile nodes functioning as routers and all wireless 

devices being interconnected to one another. Second, a MANET has a dynamic topology. 
Nodes are free to roam in or out of the geographical coverage area, causing rapid and 

unpredictable changes to the network topology over time [1]. Thirdly, a MANET operates on 

bandwidth constrained variable-capacity wireless links. Wireless communication is typically 

subject to frequent disconnections, low network throughput, high response time and lack of 
security [2,3]. Fourthly, a MANET is often bounded by energy-constrained operations as nodes 
are often hand-held and battery-powered wireless transmitters [3]. MANETs applications cover 

many areas that share a common need of an infrastructureless rapid deployment network, 

examples being emergency operations, collaborative and distributed computing, inter-vehicle 
communication, Hybrid wireless networks, and military applications.  

Broadcasting is the process by which one node sends a packet to all other nodes in the 

network. Broadcasting has been extensively used in networks for applications such as 
discovering neighbours, collecting global information, naming, addressing, and sometimes 

helping in multicasting [4]. Particularly in a MANET, due to node mobility, broadcasting is 

expected to be performed more recurrently. For example, broadcast service could be used for 

paging a particular host, sending an alarm signal, and finding a route to a particular host [
5
]. 

Moreover, Ad hoc On-Demand Distance Vector Routing (AODV)[6], Dynamic Source Routing 

(DSR)[7], Zone Routing Protocol (ZRP)[8], and Location Aided Routing (LAR)[9] are some 
examples of routing protocols that rely on broadcasting for route discovery.   

Blind flooding is the basic approach to broadcasting where every node in the network 

forwards the received packet exactly once. Blind flooding is simple and guarantees high 

reachability, but at the expense of inefficient utilisation of system resources such as channel 

bandwidth and battery power of mobile nodes. The approach is associated with high redundant 
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transmissions that can cause high channel contention and packet collisions in the network. This 

phenomenon of blind flooding is referred to in the literature as broadcast storm problem [5].  

Several methods have been proposed to alleviate the broadcast storm problem associated 

with blind flooding [5]. However, these methods can be classified into two categories. The first 
category of broadcast schemes is referred to as non-deterministic broadcast schemes. These 
schemes mitigate the network congestion levels by reducing the number of retransmitting 

nodes. This is achieved by inhibiting some intermediate nodes from forwarding the received 

broadcast packets using some local topological characteristics. Examples of the non-
deterministic broadcast schemes include counter-based, area-based, distance-based, and 

probability-based schemes [5].  

In counter-based scheme, a node is allowed to forward a broadcast packet if the number of 
duplicate packets received is less than a threshold value. The area-based scheme allows only the 

nodes that have the potential of reaching more nodes which have not been covered by the 

broadcast area to forward the packet. Furthermore, in the distance based scheme the forwarding 

node compares the distance between itself and each neighbouring node that has previously 
rebroadcast the packet against a threshold distance value. If the distance from any neighbouring 

node is greater than a threshold, the node refrains from forwarding the packet.  A node using 
probabilistic broadcast scheme rebroadcasts a received packet with a predetermined probability 

p < 1. The scheme is similar to blind flooding if the predetermined probability is 100%. 
The second category of broadcast schemes predetermines a set of forwarding nodes based 

on global topological information of the network. These schemes are referred to as 

deterministic broadcast schemes. Examples of deterministic broadcast schemes include pruning 
[10], multipoint relaying [11], node-forwarding [12], neighbour elimination [13], and clustering 

[14].  

In general, in non-deterministic broadcast schemes, nodes make instantaneous local 
decisions about whether to broadcast a message or not using information derived only from 

overheard broadcast messages. Consequently, non-deterministic schemes incur a small 

communication overhead and can adapt to changing environments when compared to 

deterministic schemes [15]. 

In this study we propose a new efficient counter-based broadcast scheme that aims to 

reduce the broadcast storm problem without degrading the reachability. Our new broadcast 

scheme dynamically adjusts the counter threshold at a forwarding node based on its local 
topological characteristics. Our simulation results reveal that the proposed scheme can achieve 

better performance in terms of saved rebroadcast while providing comparable reachability when 

compared against the traditional counter-based scheme and the blind flooding based broadcast. 

The rest of this paper is organised as follows. Section 2 will explain the related work of the 

counter-based rebroadcast. Section 3 outlines our proposed adjusted-counter-based scheme. 

Section 4 presents the simulation results of the proposed algorithm. Finally, section 5 is our 

future directions and conclusion.  

2. RELATED WORK 

Counter-based broadcasting was initially proposed in [16] as a mechanism to reduce 

redundant rebroadcast packets and alleviate the problems associated with blind flooding. The 

basic idea of the counter-based scheme is based on the inverse relation between the expected 

additional coverage (EAC) and number of duplicate broadcast packets received [5,16]. 
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Essentially, if the number of duplicate packets received at a node high then, the EAC is 

expected to be low if the packet forwarded. This is because most if not all of the neighbours of 

the forwarding node would have received the packet. 

A node is prevented from forwarding a received broadcast packet when the EAC at the 
node is low. The idea of EAC is depicted by the example shown in Figure 1. The hollow shaped 

nodes are source nodes that initiate the broadcast transmission and the solid black nodes are 

nodes we use to clarify our idea; we will refer to them as black-a and black-b. Apparently, the 
neighbourhood density of black-a is higher than black-b. Therefore, the number of duplicate 

broadcast packets that would be received by black-a is higher. Moreover, it is likely that most 

of the nodes within the transmission range of black-a would already have been reached by other 

forwarding nodes. Therefore, the EAC of black-a is lower than the EAC of black-b. 

     The counter-based broadcasting scheme works as follows: when receiving a message for the 

first time a counter c is initiated to keep track of the number of duplicate packets received and a 

random assessment delay (RAD) timer is also initiated. The RAD is a jitter randomly chosen 
between 0 and Tmax seconds,. This delay is necessary for two reasons. First, it allows nodes 

adequate time to receive redundant packets and assess whether to rebroadcast. Second, the 

randomized scheduling prevents collisions [17]. As soon as the RAD timer expires the counter c 

is compared against a fixed threshold value C; broadcast is inhibited if Cc ! . An adaptive 

counter-based scheme was proposed in [4]. The authors have suggested extending the 

traditional fixed counter threshold scheme to incorporate the number of neighbours at a node. 

Specifically, the decision to forward the broadcast packet is determined by the function )(nC  

where n is the number of neighbours of the forwarding node. However, they have stated that the 

function )(nC is undefined [4].  

),0[ maxTRAD =                    (1) 

Other variants of the counter-based broadcast scheme include color-based [18] scheme and 

the distance-aware counter-based scheme [19]. The main idea of the first scheme is to assign 

colours to the broadcast packets. Using ! different colors C1, C2, . . . , C! each forwarding node 

selects a colour which it writes to the colour-field of the broadcast packet. All nodes which hear 

the packet rebroadcast it unless they have heard all ! colours by the time a random timer 

expires. The question that could be asked is: what if !=3 and a node received 2! messages 

having the colours {C1, C2} only? According to color-based broadcasting, this node will still 

rebroadcast the message although it received a high number of messages, six. Additionally, the 

proposed color-based broadcasting scheme suffers from the same drawback that the fixed 

counter-based suffers from: it scores high reachability only when used with homogeneous 

density networks; when the network is sparse !=3, and when dense !=2. Moreover, the authors 

stated that by increasing ! reachability increases. However, they also claimed that there is no 

such threshold value that can provide full-reachability for any arbitrary connected network. The 

distance-aware counter-based broadcast is based on the counter-based algorithm proposed by Ni 
et al [5]. Additionally, this algorithm introduces the concept of distance into the counter-based 

broadcast scheme by giving nodes closer to the node transmission range border a higher 

rebroadcast probability since they create better EAC. 
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3.  ADJUSTED COUNTER-BASED BROADCAST  

Existing counter-based broadcasting schemes use a fixed threshold value to alleviate the 

shortcomings of pure flooding; however, we have the following remarks on counter-based 

broadcast schemes with existing fixed threshold value. First, the topology of MANETs is often 
random and dynamic with varying degrees of node density in various regions of the network as 

shown in Figure 3. The network may contain sparse and dense regions. Therefore, fixed counter 

threshold approach suffers from unfair distribution of C since every node is assigned the same 

value of C regardless of its local topological characteristics. Second, there exist a trade-off 
between reachability and saved rebroadcast. While using small threshold values provides 

significant broadcast savings, unfortunately, the reachability will degrade sharply in a sparse 

network. Increasing the value of C will improve the reachability, but, once again, the amount of 

Figure 1: Expected Additional Coverage example 

(a) (b) 

black-a black-b 

Figure 3: Example of changeable network topology. (a) 

Dense network with 30 nodes (b) the same network with 
nodes forming several sets of sparse networks. 

ACB_Broadcast_Algorithm 

 
Pre: avg is average number of 

neighbours 
a broadcast packet m at node X is 

heard 

 

Post: rebroadcast the packet or 
drop it, according to the 

algorithm 

 

1. Get the Broadcast ID 
2. Get degree n of node X 
3. If   n < avg then  

Sparse network  

C = C1 
Tmax = x/RF1 

4. Else  

Dense network 

C = C2;  
Tmax = x/RF2 

5. End if 

6. Set RAD 

7. c = 1 
8. While (RAD) Do 

If (same packet heard) 
Increment c 

9. End while 
10. If (C < c) 

drop packet 

exit algorithm 
11. End If 
12. Submit the packet for transmission  

End ACB_Broadcast_Algorithm 

 
Figure 2: Adjusted counter-based broadcast 

algorithm 

             Tmax =  x / RF                               (2) 
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saving will be sacrificed [4]. Third, according to my knowledge, there is no proposed method 

that dynamically and autonomously changes the counter threshold value.  

Accordingly, sparse networks need a higher chance to rebroadcast than dense networks. 

This could be achieved by one of two ways or a combination of them. First, altering the 
threshold value C to adapt to network density where a  small threshold value C2 is used for 

dense networks (high n) and a large threshold value C1 for sparse networks (low n). Second, 

altering the Random Assessment Delay (RAD) where a small RAD is used for dense networks 
(high n) and a large RAD for sparse networks (low n). Moreover, a Random Factor (RF) is 

introduced as shown in Equation 2 where x is a random number between zero and one. 

Equation 2 implies the inverse relation between RF and RAD by substituting Tmax in Equation 

1. 

The adjusted counter-based broadcast algorithm, Figure 2 works as follows: when 

receiving a broadcast message for the first time a node sets the RAD, which is randomly chosen 

between 0 and 1 second and initiates the counter to one. Following, the node checks the number 
of neighbours n against the average number of neighbours avg; if n < avg then the network is 

considered sparse and C1 is selected as the threshold value and RF is set to RF1 , otherwise the 

threshold value is set to C2 and RF is set to RF2. Additionally, the values C1 and C2 are 

selected in a way that considers the expected additional coverage EAC. That is, c1 (sparse 
network threshold) should be in a way larger than c2 (dense network threshold) in order for the 

node to have a higher chance to rebroadcast in a sparse area whilst the EAC of the sparse 

network is higher than that of the dense network as we mentioned with an example previously. 
The same principle applies to RAD, that is, RF1 is selected to be smaller than RF2. After 

selecting the threshold value and during the RAD, the counter is incremented by one for each 

redundant packet received. When the RAD expires the counter is checked against the threshold 

value, if the counter is less than or equal to the threshold, the packet is rebroadcast. Otherwise, 
it is simply dropped.  

While blind flooding ensures that every node in the network receives the broadcast packet 

(i.e. high reachability) at the cost of high communication overhead (i.e. low save rebroadcast), 
our proposed scheme aims at significantly reducing the communication overhead while still 

achieving comparable reachability when compared to blind flooding. To achieve this, our 

broadcast approach utilizes neighbourhood information, i.e. number of neighbours in particular 

to select the best counter threshold. The number of surrounding neighbours (n) a node have is 
known by periodic exchange of HELLO packets among neighbouring nodes.  

4. PERFORMANCE ANALYSIS 

We evaluate the performance of our proposed algorithm using the ns-2 network simulator 

[20]. Ns-2 is a discrete event simulator targeted at networking research for both wired and 

wireless networks. Moreover, ns2 has been used by most researchers for performance 
evaluation in MANETs research [17,19,18]. The present study investigates the performance 

impact of system parameters on the proposed algorithms; notably node mobility, network 
density and traffic load. In addition, we have investigated the effects of RAD RF values on the 

performance of the proposed algorithm. For system parameter under investigation, the counter-
threshold values have been fixed c1 = 2 and c2 =3 and the RF values (RF1, RF2) are varied 
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over the range (100, 10), (100, 1) and (10, 1). We compared the results of ACBase against the 

traditional counter-based with counter threshold set to 2 [17] and blind flooding. 

 

4.1. Simulation Setup  

The radio propagation model used in this study is the Ns-2 default, which uses 

characteristic similar to a commercial radio interface, Lucent’s WaveLAN card with a 2Mbps 

bit rate [21]. The Distributed Coordination Function (DCF) of the IEEE 802.11 protocol [22]  is 

used as the MAC layer protocol. The mobility model uses the random waypoint model in a flat 
area of 1500m x 500m. In a random waypoint mobility model, each node at the beginning of the 

simulation remains stationary for a pause time seconds, then chooses a random destination and 

starts moving towards it with a randomly selected speed from a uniform distribution [0, max-
speed]. After the node reaches its destination, it again stops for a pause-time interval and 

chooses a new destination and speed. The simulation is allowed to run for 100 seconds for each 

simulation scenario. The following simulation assumptions are commonly used in many 

MANET studies [5,17]. We assume that a host can detect duplicate broadcast messages. This is 
essential to prevent endless flooding of a message. One way to do so is to associate with each 

broadcast message the broadcast ID [4,5]. Moreover, we assume that nodes have sufficient 

power supply to function properly throughout the simulation time. 

Table 1 shows some of the essential simulation parameters that have been used in the 

evaluation of our protocols.  

TABLE 1: SIMULATION PARAMETERS 

Simulation parameter Value 

Simulator  ns-2 (version 2.33) 

Network Area  1500x500 m
2
 

Transmission range  250 meters 

Simulation Time  100 sec 

Number of Trials  10 

MAC layer protocol IEEE 802.11 

Packet Rate 2 packets per sec per node 

Confidence interval  95% 

 

4.2. Performance measures 

Below is the performance metrics used to evaluate the performance of the proposed 
broadcast approach: 

• Reachability (RE), defined as r/e, where r is the number of hosts receiving the broadcast 

packet and e is the number of mobile hosts that are reachable, directly or indirectly, from 

the source host. 

• Saved Rebroadcast (SRB), defined as (r ! t)/r, where r is the number of hosts receiving the 

broadcast message, and t is the number of hosts that actually transmitted the message.  
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• Average latency (Delay), which is the interval from the time the broadcast, was initiated to 

the time the last host finished its rebroadcasting. 

4.3. Simulation and  Discussion  

To analyze the impact of different RAD values on the performance of our proposed 
Adjusted Counter Based approach (ACBase), we have divided out study into three parts: first 

the study of node mobility, then density and finally traffic load. In each part we examine the 
impact of different RAD values fixing the threshold to (2x3) and (2) for ACBase and Cbase 

respectively. The results for blind flooding have been added for the sake of completeness 

 

4.3.1. Effects of Mobility and RAD 

We investigate the effects of mobility on the performance of the proposed algorithm by 

varying the maximum nodal speed over a range of 1, 5, 10, 15, and 20 m/sec. The number of 

nodes deployed over the area of 1500m x 100m had been fixed at 50. Ten nodes were randomly 
selected to initiate the broadcast process.  Each node sends 2 packets/sec.  Packet size of 512 

byes has been used. Figure 4a depicts the SRB versus maximum nodal speed.  As can be shown 

in the figure ACBase can achieve high SRB when compared against the counter-based and 
blind flooding when the mobility of nodes is increased from low to medium mobility. For 
example, the ACBace SRB with RFs of (100, 1) is around 35% and that of counter-based is 

around  17% at low mobility of 1m/sec. At medium to high mobility (i.e. from 10m/sec) the 

SRB of ACBase is around 25%  and that of counter-based is 10%. In addition, apparently the 
SRB values for ACBase increases with increasing the waiting time factor (RF). For instance, 

the SRB of ACBace with RFs of (100, 1) is about 3% higher that that of ACBace with RFs of 

(100, 10).  

Figure 4b show reachability versus mobility. All the algorithms present similar trends of 
reachability for all node speeds. However, the reachability is low (i.e. between 90 % and 95%) 

when nodes mobility is low. This is due to poor connectivity in low mobility environments. In a 

mobility environment such as 20 m/sec, the reachability for all the algorithms is around 100% 
Figure 4c investigates the effects of mobility and random delay factor on average latency 

(delay for short) of the protocols. The figure shows the ACBase approach is out performed by 

both counter-based scheme and blind flooding for mobility scenarios. But the delay for all the 

protocols remains fairly constant across all mobility. The figure also reveals that the delay 
incurred by ACBase is worsened when the RFs decreases from (100, 10) to (100, 1). 

4.3.2. Effects of Density and RAD: 

This section evaluates the effects of node density and random delay factor on the 
performance of the proposed protocol. In this study we vary the density by increasing number 

of nodes deployed over a fixed area of 1500m x 500m. The number of nodes has been varied 

from 25 to 200 in steps of 25 nodes with each node moving at a speed between 0 and 5 m/sec. 

To reduce effects of traffic load, one node was randomly selected to initiate the broadcast 
process at a sending rate of 2 packets/sec. 

Figure 5a presents SRB verses network density. The SRB of ACBase increases with 

increasing density. However, the SRB of counter-based and blind flooding remains almost 

flatten with increasing node density. This due to the factor that the counter-base scheme uses 
fixed counter value and fixed random factor for all the regions in the network. However, a node 
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using ACBase set these values low when in dense region and high when in a sparse region of 

the network. At low density of 25 nodes, the ACBase with RFs of (100, 1) and the counter-

based scheme achieves similar SRB of around 10%. But at high density of 200 nodes, the 

ACBase with RFs of (100, 1) achieves superior performance of SRB reaching about 60%. 
Figure 5b shows the effects of network density on reachability. All the algorithms present 

similar trends of reachability with increasing network density. The reachability increases almost 

linearly from low to medium network density and reaching 100% at high network density. The 

poor reachability at low network density is due to poor connectivity suffered by sparse 
networks. In figure 5c we present results of the effects of density and random factor on average 

latency. ACBase with RFs of (100, 10) achieves comparable performance in terms of delay 

with the counter-based and blind flooding across all network densities. However, the delay 
incurred by ACBase with RFs of (100, 1) is much high, reaching about 500% of the delay 

incurred by the counter-based scheme. 

4.3.3. Effects of Traffic Load RAD: 

Studying network behaviour under unfixed traffic load, 50 nodes was considered. Moreover, 
number of sending nodes employed was 1, 5, 10, 15, 20, and 25 nodes. Given that each of the 

sending nodes has the chance to send 2 packets/ sec, the total network load would be: 2, 10, 20, 
30, 40, and 50 packets/ sec. Figure 6a shows ACBase SRB gain over Cbase of 144% with an 

average performance of 24% and 12% for ACBase and Cbase respectively. With respect to 
reachability the performance was quite comparable with a gain of 1.6% for ACBase against 

Cbase. However, reachability degrades as the traffic load increases, that is due to higher 

collisions and contentions that worsen reachability. The same is to say with regards to delay 
that is affected negatively with higher traffic loads. Moreover Delay gain is 9% of ACBase over 

Cbase. 
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Figure 4. Effects of node mobility and random assessment delay (RAD) on the performance of 

the protocols for 100 nodes over a topology area of 1500m x 1500m: (a) Saved Rebroadcast 

(SRB): (b) Reachability and (c) Delay 

 

  

 
Figure 5. Effects of network density and random assessment delay (RAD) on the performance 

of the protocols for a traffic rate of 2 packets/sec with 512 bytes packet size: (a) Saved 

Rebroadcast (SRB): (b) Reachability and (c) Delay 
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Figure 6. Effects of network traffic load and random assessment delay (RAD) on the 
performance of the protocols for 50 nodes over topology area of 1500m x 500m: (a) Saved 

Rebroadcast (SRB): (b) Reachability and (c) Delay 

 

5. CONCLUSION AND FUTURE WORK 

This paper has analysed the impact of variable RAD values on the performance of the 
proposed Adjusted Counter-Based broadcasting scheme in MANETs. We analysed our 

algorithm under three different variations: mobility, density, and traffic load. Moreover, the 

effect of alternative RAD values on SRB, Reachability and delay was investigated. ACBase 
broadcasting scheme scored a large gain in SRB compared to the fixed counter-based with a 

similar reachability and a slight loss in delay. As a continuation to this work, we plan to 

investigate the impact of different threshold values on the performance of the new ACBase 

scheme.  
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Simulation of a tandem router system for mobile 
network traffic with different source traffic 

distributions
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1$%1& 3-#8(1#& "*& ;%3:%;-& )%1%& %33"<"*;& %1& GAD& GQ& %*)& 1$-& 3-6-"<-3& %3-& /+,# /-& %*)& /0
3-#2-61"<-(4=&S86$&;%3:%;-&"#&)-1-61-)&/*&%33"<%(&%1&%&*/)-&:-0/3-&"1&-*1-3#&1$-&C8-8-&%*)&
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(-%)#&1/&%&WK!U'&:-"*;&#-*1&82#13-%.=&1+,#1- %*)&10&%3-&1$-&WK!U'&)-(%4#&03/.&G/81-3A

1/& S-*)-3D& 03/.& G/81-3Q& 1/& G/81-3AD& %*)& 03/.& G-6-"<-3& 1/& G/81-3Q& 3-#2-61"<-(4=& ,$-&

6/*#1%*1& 6/..8*"6%1"/*& )-(%4#& 0/3& %& 2%69-1& 2%##"*;& /<-3& 1$-& ("*9#& :-17--*& 1$-& S-*)-3&

%*)& G/81-3AD& G/81-3A& %*)& G/81-3QD& %*)& G/81-3Q& %*)& G-6-"<-3& %3-& 2+D& 2-& %*)& 20
3-#2-61"<-(4=

,$-&#866-##08(&13%*#."##"/*&/0&%*&8*6/33821-)&2%69-1& "#&3-6/;*"5-)&:4& 1$-&#-*)-3&/*&

3-6-"21& /0& %& 2/#"1"<-&%69*/7(-);.-*1& I"=-=D& %*&!U'J& 03/.& 1$-& 3-6-"<-3& %66/3)"*;& 1/& 1$-&

13%*#."##"/*& 23/1/6/(=& ,$-& #-*)-3& #-1#& %& 1".-3& 7$-*& "1& 13%*#."1#& %& 2%69-1& %*)& "0& */&

%69*/7(-);.-*1& "#& 3-6-"<-)& 7$-*& 1$-& 1".-3& 3-%6$-#& 1$-& 23-)-0"*-)& 1".-K/81& <%(8-&

2"34567D& 1$-& 2%69-1& "#& 6/*#")-3-)& 1/& $%<-& :--*& (/#1& %*)& %& 3-13%*#."##"/*& .%4& :-&

%11-.21-)=& ,$-& 23/:%:"("14& /0& 3-13%*#."##"/*& I'4849:;*)<J& "#& %(#/& <%3"%:(-=& H$-*&

G-#-*)E3/:&f&AD&1$-3-&"#&%(7%4#&%&3-13%*#."##"/*&%11-.21&6%8#"*;&6/*;-#1"/*&3-#8(1"*;&"*&

$";$-3& 13%*#."##"/*& )-(%4#=& H$-*& G-#-*)E3/:& f& gD& */& 3-13%*#."##"/*#& %3-& %((/7-)& #/&

(/##-#&%3-&$";$-3&:81&6/*;-#1"/*&"#&(/7-3=&O-*6-D&#866-##08(&13%*#."##"/*#&%3-D&/*&%<-3%;-D&

0%#1-3=&

,$-&./1"<%1"/*&0/3&"*13/)86"*;&(/##&3%1-#&%*)&6/33821"/*&23/:%:"("1"-#&6/.-#&03/.&1$-&

*/1"/*&/0&./:"("14=&F/:"(-&*-17/39#&%3-&#8:d-61&1/&1/2/(/;4&6$%*;-#&)8-&1/&./<-.-*1&/0&

1$-&*/)-#=&!(#/D&#"*6-&1$-&6/..8*"6%1"/*&8#-#&%"3&%#&1$-&.-)"8.D&"*1-30-3-*6-&03/.&/1$-3&

)-<"6-#& %*)& */"#-& "*& 1$-& 6/..8*"6%1"/*& 6$%**-(& %(#/& %00-61& 3-("%:(-& 13%*#."##"/*=&

,$-3-0/3-&"1&"#&".2/31%*1&1/&%66/../)%1-&1$-#-&-33/3&23/:%:"("1"-#&"*&1$-&./)-(=&

,$-&*%183-&/0&13%00"6&"*&1$-&./)-(&"#&#/.-7$-3-&:-17--*&,UE&%*)&XVE=&L1&"#&*/1&283-&

XVE&)8-&1/&1$-&"*6(8#"/*&/0&!U'#&%*)&WK!U'#=&!1&1$-&#%.-&1".-D&1$-&13%00"6&"#&*/1&283-&

,UE&:-6%8#-&1$-3-&"#&*/&*/1"/*&/0&6/*;-#1"/*&6/*13/(=

<)9/;.5&$/,+)14#.5$#)=/$>)?&%@/+7)#,.%'4)$%&AA/')-/#$%/".$/,+#

,$-& %81$/3#& /0& @QB& ".2(-.-*1-)& %& )"#63-1-& -<-*1& #".8(%1"/*& /0& 1$-& ./)-(& )-#63":-)& "*&

#-61"/*&Q=&,$-&#".8(%1"/*&"#&73"11-*&"*&h%<%&8#"*;&1$-&hLWRS&!EL&7$"6$&"#&%*&->1-*#":(-&

(":3%34& 0/3& #".8(%1"*;&.81("K6(%##& C8-8-"*;& *-17/39#=& !&.%*8%(& 0/3& 1$-& 2%69%;-& 6%*& :-&

0/8*)&"*&@aB=

<8()9/;.5&$/,+)1.+)2/;4

i-0/3-&23/6--)"*;&7"1$&1$-&#".8(%1"/*#D&7-&0"3#1&6/*)861-)&%*&->2-3".-*1&1/&)-1-3."*-&%&

#8"1%:(-& 38*& 1".-& 0/3& /83& #".8(%1"/*#=& S"*6-& 1$-& 138*6%1-)& E%3-1/& )"#13":81"/*D& 7"1$& "1#&

$-%<4& 1%"(D& 1-*)#& 1/& 3-%6$& 1$-& #1-%)4& #1%1-& 0%"3(4& #(/7(4& %#& 6/.2%3-)& 1/& 1$-& E/"##/*&

)"#13":81"/*D& 7-& #".8(%1-)& 138*6%1-)& E%3-1/& )"#13":81-)& %33"<%(& 23/6-##& 7"1$& )"00-3-*1&

)83%1"/*#& /0& #".8(%1"/*& 1".-=& H-& 0/8*)& 1$%1& %01-3& %& (%2#-& /0& ]gg& #-6/*)#& #"*6-& 1$-&

:-;"**"*;&/0&1$-&#".8(%1"/*D&1$-&FG,&1-*)-)&1/&#1%4&6/*#1%*1&0/3&1$-&*->1&]gg&#-6/*)#=&S/&

"1& 7%#& 3-%#/*%:(-& 1/& %##8.-& 1$%1& 1$-& #4#1-.& 3-%6$-#& #1-%)4& #1%1-& %01-3& ]gg& #-6/*)#=&

U/*#-C8-*1(4D&0/3&1$-&3-#1&/0&1$-&2%2-3&I8*(-##&/1$-37"#-&#1%1-)JD&1$-&7%3.K82&2-3"/)&$%#&

:--*& 6/*#")-3-)& %#& ]gg& #-6/*)#& 03/.& 1$-& :-;"**"*;& /0& 1$-& #".8(%1"/*& 38*=& !((&

.-%#83-.-*1#&%3-&3-#-1&%1&1$-&-*)&/0&1$-&7%3.&82&2-3"/)&%*)&1$-&#".8(%1"/*#&%3-&38*&0/3&

%*/1$-3& Ag& #-6/*)#& /<-3& 7$"6$& 2-3"/)& 1$-& #1%1"#1"6#& %3-& ->13%61-)& %*)& 8#-)& 0/3& 0831$-3&

%*%(4#"#=!((&#".8(%1"/*#&$%<-&:--*&2-30/3.-)&8#"*;&1$-&U%.-(/1&6(8#1-3& @AgB&%1&L.2-3"%(&

U/((-;-&6/.281"*;&(%:/3%1/34=&&
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<83)0B0B()C.4.4)=/$>).+/$)&%%/?&5#

H-&0"3#1&#".8(%1-)&%&#".2(-&F`F`A&C8-8-"*;&./)-(&7"1$&->2/*-*1"%(&%33"<%(&%*)&#-3<"6-&

3%1-#=&,$-& 0">-)&2%3%.-1-3#& "*& 1$-& #".8(%1"/*&7-3-& 6$/#-*& %#&;"<-*& "*&,%:(-&_=A=&,$-#-&

2%3%.-1-3#&%3-&1$-&#%.-&%#&8#-)&"*&1$-&#".8(%1"/*#&"*&@QB=&E%69-1#&%33"<-&%1&1$-&#-3<-3&%#&%&

E/"##/*&23/6-##&7"1$&.-%*&%33"<%(&3%1- ! ! D&'E4$#&2-3&8*"1&1".-=&i4&8*"1&%33"<%(#&7-&.-%*&

1$%1&7$-*-<-3&1$-3-&"#&%*&%33"<%(D&/*(4&/*-&2%69-1&"#&"*d-61-)&"*1/&1$-&#4#1-.=&

2&"54)<8():&%&;4$4%#)'>,#4+)A,%)9/;.5&$/,+),A)0B0B()F.4.4#

!" .-%*&%33"<%(&3%1-
g=j]&>&Agb 2%69-1#&

2-3&#-6/*)

"AD&"Q #-3<"6-&3%1-
Agb&2%69-1#&2-3&
#-6/*)

;AD&;Q 23/:%:"("14&&/0&6/33821-)&)%1%&%1&!AD&!Q g=gQk

;_ 23/:%:"("14&&/0&6/33821-)&)%1%&%1&3-6-"<-3 g=Ak

WA&D&WQD&W_

WK!U'&)-(%4#&03/.&G/81-3A 1/&#-*)-3D&03/.&

G/81-3Q&1/&G/81-3AD&%*)&03/.&3-6-"<-3&1/&

G/81-3Q
g=A&##

UAD&UQ 1/1%(&:800-3&6%2%6"14&/0&G/81-3ADG/81-3Q ag&

,AD&,QD&,_

6/..8*"6%1"/*&)-(%4#&:-17--*&#-*)-3&%*)&
G/81-3AD&G/81-3A %*)&G/81-3Q D&G/81-3Q %*)&

3-6-"<-3
g=]&##

,".-N81 S-*)-3&1".-K/81&<%(8- g=A&.#

M";83-# _=A %*)&_=Q&#$/7&1$%1&7"1$&%*&"*63-%#-&"*&3-13%*#."##"/*&23/:%:"("14D&1$-&

FG,& %(#/& "*63-%#-#=& ,$-& l]k& 6/*0")-*6-& "*1-3<%(& 6/.281-)& )83"*;& Ag& "*)-2-*)-*1&

#".8(%1"/*&38*#&"#&%(#/&#$/7*=

G/7.%4) <8() 012) ?4%#.#) %4$%@) D%,"&"/5/$/4#) A,%) &)

$&+-4;)+4$=,%E)=/$>)D&'E4$)&%%/?&5#).#/+7)!/)H)(I)

&+-)1/)H)<I

G/7) <83) 012) ?4%#.#) %4$%@) D%,"&"/5/$/4#) A,%) &)

$&+-4;)+4$=,%E)=/$>)D&'E4$)&%%/?&5#).#/+7)!/)H)<I)

&+-)1/)H)(I
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M";83-&_=A&#$/7#&1$-&3-#8(1#&7$-*&8#"*;&%33"<%(&:800-3#&/0&#"5-&Ag&%*)&3-6/<-34&

:800-3#&/0&#"5-&_g&7$-3-%#&M";83-&_=Q #$/7#&1$-&3-#8(1#&7$-*&%33"<%(&:800-3#&%3-&/0&#"5-&_g&

%*)&3-6/<-34&:800-3#&%3-&/0&#"5-&Ag=&G-#-*1&2%69-1#&1$%1&%3-&-<-*18%((4&#866-##08(&"*683&%&

$";$-3&13%*#."##"/*&)-(%4D&%*)&1$-3-0/3-&3-#8(1&"*&3%"#"*;&1$-&%<-3%;-&/0&1$-&3-#2/*#-&1".-=

,$-#-&17/&0";83-#&%(#/&)-2"61&1$%1&.%9"*;&%33"<%(&:800-3#&(%3;-3&3-#8(1#&"*&%&$";$-3&<%(8-&/0&

1$-&FG,=&,$"#& $%22-*#&:-6%8#-& 1$-&.-%*&C8-8-&7%"1"*;& 1".-& 0/3& 1$-&2%69-1#& "*63-%#-#&

7$-*& 1$-& C8-8-"*;& :800-3& "#& (%3;-=& O/7-<-3D& %*& ".2/31%*1& 2/"*1& 1/& */1-& "#& 1$%1& 7$-*&

%33"<%(&:800-3#&%3-&/0&#"5-&_gD&1$-&FG,&"#&(-##&)-2-*)-*1&/*&1$-&3-13%*#."##"/*&23/:%:"("14&

1$%*&7$-*&1$-&%33"<%(&:800-3&#"5-&"#&Ag=

,$"#&#".8(%1"/*&7%#&2-30/3.-)&7"1$&1$-&#%.-&2%3%.-1-3#&%#&.-*1"/*-)&"*&@QB&:81&

1$-& 3-#8(1#& 7-3-& 0/8*)& 1/& :-& #";*"0"6%*1(4& )"00-3-*1=&H$"(-& "*& /83& #".8(%1"/*D& 1$-&FG,

<%3"-#&"*&1$-&3%*;-&!"#$%&J)K8K$% 0/3&1$-&#6-*%3"/& "*&7$"6$&%33"<%(&:800-3#&%3-&/0&#"5-&AgD&

1$-&FG,& "*& @QB& "#& %618%((4& (/7-3& (4"*;& "*& 1$-& 3%*;-& '"($%& J) L8M$%& 0/3& 1$-& #%.-& #-1& /0&

3-#-*)&23/:%:"("1"-#=&&L*&1$-&#-6/*)&6%#-&/0&!"&_gD&1$-&FG, "*&@QB&7%#&"*&1$-&3%*;-&!")*$%&

J) K8(N$#& "*& @QB& %#& /22/#-)& 1/& :-"*;& "*& 1$-& 3%*;-& +"#!$%& J) O8MIM$% "*& /83& #".8(%1"/*#=&

M831$-3& "*<-#1";%1"/*& 3-<-%(-)& 1$%1& 1$-& #".8(%1"/*& "*& @QB& 7%#& 2-30/3.-)& 7"1$&

#$%%&'(#)*($'+)',+-./0+,12)34+$5+6768"4+)',+67$%"4+914:1#*(;123+('4*1),+$5+*<1+;)2&14+

#1%1-)&"*&1$-&2%2-3=

<8<)0B0B()C.4.4)=/$>)"&$'>)&%%/?&5#

,$-3-& %3-& .%*4& #"18%1"/*#& 7$-3-& 1$-& %223/>".%1"*;& %##8.21"/*& /0& E/"##/*& %33"<%(#& "#&

3-%#/*%:(-m& 0/3& ->%.2(-D& %& #82-32/#"1"/*& /0& #2%3#-D& "*)-2-*)-*1& 3-*-7%(& 23/6-##-#& "#&

%#4.21/1"6%((4& E/"##/*& %*)& 1$-& *-1& %33"<"*;& 13%00"6& "#& "*)--)& ("9-(4& 1/& 6/.-& 03/.&.%*4&

#/836-#& @QB=& O/7-<-3D& ->1-*#"<-& #18)"-#& /0& ./)-3*& 6/..8*"6%1"/*& *-17/39& 13%00"6&

I"*6(8)"*;& c!W#& %*)&H!W#J& $%<-& 3-<-%(-)& 1$%1& ./)-(("*;& /0& *-17/39& 2%69-1& %33"<%(#&

8#"*;& 13%)"1"/*%(&E/"##/*&23/6-##-#& "#&*/1&%6683%1-=&,$-3-& "#&%&$";$&)-;3--&/0&6/33-(%1"/*&

%./*;&2%69-1&%33"<%(#&7$"6$&<"/(%1-#&1$-&E/"##/*&%##8.21"/*&/0&"*)-2-*)-*6-=&N*-&.%d/3&

#/836-&/0&6/33-(%1"/*&"#&1$-&23-<%(-*6-&/0&2%69-1#&:-"*;&#-*1&"*&:%16$-#=&H-&*/7&%##8.-&

1$%1&:%16$-#&%33"<-&%1&1$-&#-3<-3&%#&%&E/"##/*&23/6-##&7"1$&.-%*&%33"<%(&3%1-&= "&$'>4# I*/1&

2%69-1#J&2-3& 8*"1& 1".-=&H-& 3%*& 1$-& #".8(%1"/*&./)-(&7"1$&6/*#1%*1& I)-1-3."*"#1"6J&:%16$&

#"5-&)"#13":81"/*#D&9--2"*;&1$-&:%16$&#"5-&-C8%(&1/&_=&,$-&3-#1&/0&1$-&2%3%.-1-3#&6$/#-*&0/3&

#".8(%1"/*&%3-&1$-&#%.-&%#&"*&1%:(-&_=A=&,$-&%33"<%(&3%1-D&$/7-<-3D&"#&3-#6%(-)&:4&%&1$"3)&#/&

1$%1& 1$-&*8.:-3& /0&68#1/.-3#& "*d-61-)& "*1/& 1$-&#4#1-.&"#& 1$-& #%.-&%#& "*& 1$-&6%#-&/0&8*"1&

%33"<%(#=

M";83-& _=_& #$/7#& %& ;3%2$& /0& 1$-& %<-3%;-& FG,& 2(/11-)& %;%"*#1& 1$-& 3-13%*#."##"/*&

23/:%:"("14& 7"1$& %33"<%(& :800-3& #"5-#& -C8%(& 1/& Ag& %*)& 3-6/<-34& :800-3& #"5-#& -C8%(& 1/& _g=&

M";83-&_=a #$/7#&1$-&3-#8(1#&7$-*&8#"*;&%33"<%(&:800-3#&/0&#"5-&_g&%*)&3-6/<-34&:800-3#&/0&

#"5-&Ag=

!;%"*&7-&#--&1$%1&1$-3-&"#&%*&".23/<-.-*1&"*&1$-&FG,&7$-*&%33"<%(&:800-3&#"5-&"#&

Ag& %*)& 3-6/<-34&:800-3& #"5-& "#& _g=&,$"#& "#&)8-& 1/& %& ;3-%1-3& *8.:-3& /0& (/##-#& )8-& 1/& 08((&

%33"<%(&:800-3#&7$-*&1$-&%33"<%(&:800-3&#"5-&"#&#.%((=&
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G/7) <8<) 012) ?4%#.#) %4$%@) D%,"&"/5/$/4#) A,%) &)

$&+-4;)+4$=,%E)=/$>):,/##,+)"&$'>)&%%/?&5#).#/+7)

!/)H)(I)&+-)1/)H)<I

G/7) <8P) 012) ?4%#.#) %4$%@) D%,"&"/5/$/4#) A,%) &)

$&+-4;)+4$=,%E)=/$>):,/##,+)"&$'>)&%%/?&5#).#/+7)

!/)H)<I)&+-)1/)H)(I

<8P)2:B0B()C.4.4)=/$>).+/$)&%%/?&5#

L*& /3)-3& 1/& #18)4& 1$-& -00-61#& /0& 6/33-(%1"/*& %*)& #-(0K#"."(%3"14& /*& *-17/39& #1%1"#1"6#D& 7-&

#".8(%1-)&138*6%1-)&E%3-1/&)"#13":81-)&2%69-1&%33"<%(#&9--2"*;&1$-&#-3<"6-&1".-&)"#13":81"/*&

1$-&#%.-&%#&:-0/3-=&,$-&2)0&/0&1$-&138*6%1-)&E%3-1/&)"#13":81"/*&"#&

(=>?&f&
!!

!!!!

@3

>3@

&

&& A

7$-3-&'&"#&1$-&#$%2-&2%3%.-1-3D&9&"#&1$-&(/7-3&:/8*)&%*)&.&"#&1$-&822-3&:/8*)&/0&1$-&

138*6%1-)&E%3-1/&)"#13":81"/*D&!"#"$("@#$#>#$#3D&A#B#@#B#3&%*)&@,3#%"'&%*)&
,$-&->2-61-)&<%(8-&/0&1$"#&)"#13":81"/*&"#

""" " &")"
JJIAI

JI AA

!!

!!!!

!

!

@3

@33@

&&

& &&

!#&:-0/3-D&7-&0"3#1&#".8(%1-)&8*"1&%33"<%(#&0/3&1$-&E%3-1/&)"#13":81"/*= M/3&1$-&2832/#-&

/0&6/.2%3"#/*&7"1$&->2-3".-*1#&8#"*;&E/"##/*&%33"<%(#&"*&%&(%1-3&#-61"/*D&7-&.%16$-)&1$-&

.-%*#&/0&1$-&17/&)"#13":81"/*#&%*)&6%(68(%1-)&1$-&6/33-#2/*)"*;&822-3&%*)&(/7-3&:/8*)#&

0/3&138*6%1-)&E%3-1/&)"#13":81"/*=&,$-&#".8(%1"/*&2%3%.-1-3#&%3-&1$-&#%.-&%#&;"<-*&"*&1%:(-&

_=A=&,$-&#$%2-&2%3%.-1-3&> 0/3&1$-&138*6%1-)&E%3-1/&)"#13":81"/*&7%#&6$/#-*&%#&g=]D&822-3&

:/8*)&9&7%#&A=___&>&Ag
K^&
#-6/*)#&%*)&(/7-3&:/8*)&.&7%#&A=___&>&Ag

Ka&
#-6/*)#=&

M";83-#&_=]&%*)&_=b&#$/7&$/7&1$-&FG,&<%3"-#&7"1$&3-#-*)&23/:%:"("14&%#&%33"<%(&:800-3&

#"5-#&/0&:/1$&1$-&3/81-3#&%3-&6$%*;-)&03/.&Ag&1/&_g=& &!#&/:#-3<-)&"*&1$-&6%#-&/0&E/"##/*&

%33"<%(#D&FG,& "#& 3-)86-)&7$-*& 1$-& %33"<%(& :800-3& #"5-& "#& #.%((=& ,$"#& "#& :-6%8#-& 2%69-1#

#2-*)&(-##&1".-&"*&1$-&%33"<%(&C8-8-=&
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G/7) <8M) 012) ?4%#.#) %4$%@) D%,"&"/5/$/4#) A,%) &)

$&+-4;) +4$=,%E) =/$>) D&'E4$) &%%/?&5#) -/#$%/".$4-)

&'',%-/+7)$,)&)$%.+'&$4-):&%4$,)-/#$%/".$/,+).#/+7)

!/)H)(I)&+-)1/)H)<I

G/7) <8N) 012) ?4%#.#) %4$%@) D%,"&"/5/$/4#) A,%) &)

$&+-4;) +4$=,%E) =/$>) D&'E4$) &%%/?&5#) -/#$%/".$4-)

&'',%-/+7)$,)&)$%.+'&$4-):&%4$,)-/#$%/".$/,+).#/+7)

!/)H)<I)&+-)1/)H)(I

!*&"*1-3-#1"*;&/:#-3<%1"/*& "#& 1$%1&7$-*&!"fAgD&7-&#--&%&)"2& "* FG,&%#& 3-#-*)&

23/:%:"("14& "*63-%#-#& 03/.& g& 1/& g=A& %*)& 1$-*& %& 0831$-3& )"2& 03/.& g=A& 1/& g=Q=& L1& %22-%3#&

6/8*1-3K"*18"1"<-&%1& 0"3#1=&,$-&./)-(&7%#&3-K38*& 1/&6$-69& "0& 1$-&*8.:-3&/0& 3-#-*1&2%69-1#&

7%#&%618%((4&)-63-%#"*;&7"1$&"*63-%#"*;&3-#-*)&23/:%:"("14&:81&"1&7%#&*/1&0/8*)&1/&:-&1$-&

6%#-=& L1& 7%#& <-3"0"-)& 1$%1& 1$-& *8.:-3& /0& 3-#-*1& 2%69-1#& )/-#& "*)--)& ;/& 82& 7"1$& %*&

"*63-%#"*;&23/:%:"("14&/0&3-13%*#."##"/*=&S/D&/*-&3-%#/*&0/3&1$"#&2-68("%3&:-$%<"/83&6/8()&

:-& 1$%1& %(1$/8;$& 1$-& *8.:-3& /0& 2%69-1#& :-"*;& 3-#-*1& "*63-%#-#D& 1$-& 2%69-1#& 1$%1& )/& ;-1&

3-#-*1& #--& 0%"3(4& -.214& :800-3#& I/7"*;& 1/& 1$-& :83#14& *%183-& /0& 13%00"6J& /*& %33"<%(& %1& 1$-&

#-3<-3&%*)&7$"5&1$3/8;$&1$-&#4#1-.&"*6833"*;&(/7-3&)-(%4#=&,$"#&3-#8(1#&"*&:3"*;"*;&)/7*&

1$-&%<-3%;-&/0&1$-&3-#2/*#-&1".-&/0&#866-##08(&2%69-1#=&H$-*&3-#-*)&23/:%:"("14&"*63-%#-#&

0831$-3D& 1$-& #4#1-.& 9--2#& ;-11"*;& ./3-& %*)& ./3-& /<-363/7)-)& %*)& 1$-& FG,& 1$-*&

6/*1"*8-#& 1/& ;/& 82=& ,$"#& :-$%<"/83& "#& */1& #--*& "*& 1$-& 6%#-& /0& E/"##/*& %33"<%(#& I7"1$& /3&

7"1$/81& :%16$-#J& :-6%8#-& 1$-& 13%00"6& "#& (-##& :83#14& %*)& 1$-& ("9-("$//)& 1$%1& 3-#-*1&2%69-1#&

0"*)& -.214& :800-3#& "#& <-34& (/7=& ,$"#& 0"*)"*;D& $/7-<-3D& *--)#& 1/& :-& :%69-)& 82& 7"1$&

->2-3".-*1%(&3-#8(1#=&N*-&1$"*;&1/&)/&6/8()&:-& 1/&3-K38*&1$-&#".8(%1"/*&#/&1$%1&"1&3-6/3)#&

1$-&FG,&/0&1$-&3-#-*1&2%69-1#&#-2%3%1-(4&03/.&1$-&FG,&/0&1$-&2%69-1#&1$%1&%3-&#866-##08(&

"*&3-%6$"*;&1$-&3-6-"<-3&"*&1$-&0"3#1&%11-.21=&,$-&3-#8(1#&6%*&1$-* :-&%*%(45-)&1/&#--&"0&/83&

$42/1$-#"#& "#& 6/33-61& /3& */1=& ,$"#& 8*8#8%(& :-$%<"/83& .";$1& %(#/& %00-61& 1$-& /21"."5%1"/*&

3-#8(1#&23-#-*1-)&"*&@QB=

<8M)2:B0B()C.4.4)=/$>)"&$'>)&%%/?&5#

L*&/3)-3&1/&/:#-3<-&1$-&-00-61&/0&:%16$&%33"<%(#&"*&%&$-%<4&1%"(-)&)"#13":81"/*D&7-&6/*)861-)&

->2-3".-*1#&7"1$&138*6%1-)&E%3-1/&%33"<%(#&7"1$&%&6/*#1%*1&:%16$&#"5-&)"#13":81"/*&9--2"*;&

1$-&:%16$&#"5-&0">-)&%1&_=&,$-&2%3%.-1-3#&%3-&1$-&#%.-&%#&"*&#-61"/*&_=]&7"1$&1$-&->6-21"/*&

/0&k&7$"6$&"#&6$/#-*&1/&:-&P)Q)(I
RK)
2%69-1#&2-3&#-6/*)&%*)&m&7$"6$&"#&P)Q)(I

RP)
2%69-1#&2-3&

#-6/*)= ,$"#&7%#&)/*-&1/&9--2&1$-&"*1-*#"14&/0&%33"<%(#&#"."(%3&1/&7$%1&7-&$%)&"*&1$-&6%#-&

/0&8*"1&%33"<%(#=&

M";83-#&_=j&%*)&_=^&#$/7&$/7&1$-&FG,&<%3"-#&7"1$&3-#-*)&23/:%:"("14&%#&%33"<%(&:800-3&

#"5-#& /0& :/1$& 3/81-3#& %3-& 6$%*;-)& 03/.& Ag& 1/& _g=& & !#& /:#-3<-)& "*& 1$-& 6%#-& /0& E/"##/*&
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%33"<%(#D&FG,&"#&3-)86-)&7$-*&1$-& 3-6/<-34&:800-3& #"5-& "#& "*63-%#-)=&,$"#& "#&/7"*;& 1/&%&

)-63-%#-&"*&1$-&.-%*&C8-8-&7%"1"*;&1".-&/0&1$-&68#1/.-3#&7$-*&%33"<%(&:800-3#&%3-&#.%((=&

G/7) <8L 012) ?4%#.#) %4$%@) D%,"&"/5/$/4#) A,%) &)

$&+-4;)+4$=,%E)=/$>)"&$'>)&%%/?&5#)=>4%4)"&$'>4#)

&%4) -/#$%/".$4-) &'',%-/+7) $,) &) $%.+'&$4-) :&%4$,)

-/#$%/".$/,+) .#/+7) &%%/?&5) ".AA4%) #/S4) H) (I) &+-)

%4',?4%@)".AA4%)#/S4)H)<I

G/7) <8K) 012) ?4%#.#) %4$%@) D%,"&"/5/$/4#) A,%) &)

$&+-4;)+4$=,%E)=/$>)"&$'>)&%%/?&5#)=>4%4)"&$'>4#)

&%4) -/#$%/".$4-) &'',%-/+7) $,) &) $%.+'&$4-) :&%4$,)

-/#$%/".$/,+) .#/+7) &%%/?&5) ".AA4%) #/S4) H) <I) &+-)

%4',?4%@)".AA4%)#/S4)H)(I

H$-*&7-&6/.2%3-& 1$-#-& 3-#8(1#&7"1$& 1$/#-&/:1%"*-)& "*&6%#-&/0&8*"1&,E& %33"<%(#&

7"1$&%33"<%(&:800-3#&/0&#"5-&_gD&7-&#--&1$%1&0/3&8*"1&%33"<%(#D&1$-&FG,&#$/7-)&%*&"*63-%#"*;&

13-*)&:81&*/7&"1&0"3#1&)-63-%#-#&%#&1$-&3-#-*)&23/:%:"("14&6$%*;-#&03/.&g&1/&g=QD&%*)&1$-*&

6/*1"*8-#&1/&3"#-=&,$"#&6/8()&:-&:-6%8#-&*/7&1$-&2%69-1#&%33"<-&"*&1$-&0/3.&/0&:%16$-#&/0&

#"5-&_&%*)&7$-*-<-3&%&:%16$&7"1*-##-#&%&08((&%33"<%(&:800-3D&1$-&7$/(-&:%16$&/0&_&2%69-1#&"#&

(/#1=&\%6$&/0&1$-#-&2%69-1#&"#&1$-*&#-*1&0/3&3-13%*#."##"/*&7"1$&1$-&;"<-*&23/:%:"("14=&,$8#&

1$-& *8.:-3& /0& 2%69-1#& 1$%1& %3-& :-"*;& 3-#-*1& "#&./3-& 1$%*& 1$-4&7-3-& "*& 1$-& 6%#-& /0& 8*"1&

%33"<%(#=&,$-3-0/3-&1$-#-&3-#-*1&2%69-1#&"*683&#.%((-3&)-(%4#&(-%)"*;&1/&%&(/7-3&%<-3%;-&/0&

1$-& 3-#2/*#-& 1".-=& M831$-3& "*63-%#-& "*& 3-#-*)& 23/:%:"("14& 3-#8(1#& "*& %& ./3-& 6/*;-#1-)&

#4#1-.&1$-3-:4&"*63-%#"*;&1$-&FG,&/0&#866-##08(&2%69-1#=&

<8N)!+&5@#/#),A)%4'4/?4%)&%%/?&5#

L*&/3)-3&1/&;-1&%*&")-%&/0&7$%1&$%22-*#&1/&1$-&)-2%3183-&23/6-##&1$%1&6/.-#&/81&/0&G/81-3QD&

7-& %*%(45-)& 1$-& 1".-#1%.2#& /0& 1$-& 2%69-1#& 3-%6$"*;& 1$-& 3-6-"<-3& 0/3& :/1$& E/"##/*& %*)&

138*6%1-)& E%3-1/& )"#13":81-)& %33"<%(#=& ,$-& #".8(%1"/*& 2%3%.-1-3#& 7-3-& 1$-& #%.-& %#&

)"#68##-)& 0/3& 1$-& 6%#-&/0&8*"1& %33"<%(#=&,$-& 3-6-"<-3& 1".-#1%.2#&7-3-& 6/((-61-)& )83"*;&%&

#".8(%1"/*&38*&/0&A]&."*81-#&0/3&-%6$&142-&/0&13%00"6&)"#13":81"/*=&M";83-&_=l&#$/7#&%&2(/1&

/0& 1$-& (/;%3"1$.&/0& 1$-& "*1-3K%33"<%(& 1".-&)"#13":81"/*#& /0& 1$-& 23/6-##& %1& 1$-& 3-6-"<-3& 0/3&

E/"##/*&%33"<%(#&/*&%&#-."K(/;&2(/1&"=-=D&2(/11-)&%;%"*#1&1".-&/*&%&("*-%3&#6%(-=&,$-&;3%2$&"#&

%(./#1&%&#13%";$1&("*-&7$"6$&#$/7#&1$%1&1$-&%33"<%(#&0/3&1$-&->2/*-*1"%(&->1-3*%(&%33"<%(#&%3-&

#1"((&0%"3(4&->2/*-*1"%(&7$-*&1$-4&;-1&1/&1$-&(%#1&3/81-3=&M";83-&_=Ag&#$/7#&%&#"."(%3&2(/1&0/3&

138*6%1-)& E%3-1/& ->1-3*%(& %33"<%(#& :81& "1& )/-#& */1& 6(-%3(4& 1-((& %*41$"*;& %:/81 1$-

)"#13":81"/*=
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G/7) <8O) T,7&%/$>;) ,A) $>4) -4+#/$@) A.+'$/,+) ,A) $>4)

/+$4%) &%%/?&5) $/;4#) ,A) %4'4/?4%) &%%/?&5#) =>4+) $>4)

/+D.$) &%%/?&5) D%,'4##)&$) $>4) #4+-4%) /#) 4QD,+4+$/&5)

U=/$>).+/$)&%%/?&5#V)D5,$$4-),+)&)5/+4&%)$/;4)#'&54

G/7) <8(I)T,7&%/$>;),A) $>4)-4+#/$@) A.+'$/,+),A) $>4)

/+$4%) &%%/?&5) $/;4#) ,A) %4'4/?4%) &%%/?&5#) =>4+) $>4)

/+D.$) &%%/?&5) D%,'4##) &$) $>4) #4+-4%) /#) $%.+'&$4-)

:&%4$,)U=/$>).+/$)&%%/?&5#V)D5,$$4-),+)&)5/+4&%)$/;4)

#'&54

S/D&7-&%*%(45-&1$-&;3%2$#&2(/11-)&"*&0";83-#&_=AA&%*)&_=AQ&7$"6$&#$/7&1$-&"*1-3K%33"<%(&

1".-#&/0&3-6-"<-3&%33"<%(#&0/3&E/"##/*&%*)&138*6%1-)&E%3-1/&->1-3*%(&%33"<%(#&3-#2-61"<-(4&/*

%& (/;%3"1$."6& 1".-& #6%(-=& M/3& %&E%3-1/&)"#13":81"/*D& 1$-& (/;K(/;&2(/1& #$/8()& :-& %& #13%";$1&

("*-=&O/7-<-3D&"1&"#&%22%3-*1&03/.&0";83-&_=AQ&1$%1&"1&"#&*/1&%&#13%";$1&("*-&7$"6$&#$/7#&1$%1&

"1&)/-#&*/1& $%<-&%&E%3-1/&)"#13":81"/*&%1& %((=& S/D&7-&6/*6(8)-& 1$%1&7$"(-& 1$-& ->2/*-*1"%(&

#/836-& %33"<%(#& .%"*1%"*& 1$-"3& ->2/*-*1"%(& 6$%3%61-3"#1"6#& :4& 1$-& 1".-& 1$-4& ;-1& 1/& 1$-&

3-6-"<-3D&1$-&E%3-1/&)"#13":81-)&->1-3*%(&%33"<%(#&(/#-&1$-"3&2/7-3&(%7&6$%3%61-3"#1"6#=

G/7) <8(() T,7&%/$>;) ,A) -4+#/$@) A.+'$/,+) ,A) /+$4%R

&%%/?&5) $/;4#),A)%4'4/?4%)&%%/?&5#)=/$>)4QD,+4+$/&5)

U.+/$) &%%/?&5#V) &$) $>4) #4+-4%) D5,$$4-) ,+) &)

5,7&%/$>;/')$/;4)#'&54

G/7) <8(3) T,7&%/$>;) ,A) -4+#/$@) A.+'$/,+) ,A) /+$4%R

&%%/?&5) $/;4#) ,A) %4'4/?4%) &%%/?&5#) =/$>) $%.+'&$4-)

:&%4$,) U.+/$) &%%/?&5#V) &$) $>4) #4+-4%) D5,$$4-) ,+) &)

5,7&%/$>;/')$/;4)#'&54

P):,/##,+)!%%/?&5#)=/$>)U$%.+'&$4-V):&%4$,)W&$'>4#

F/1"<%1-)&:4&1$-&#18)"-#&"*&@_DjDAAB&1$%1&#8;;-#1&%&("*9&:-17--*&0"(-`3-C8-#1&#"5-&)"#13":81"/*&

%*)& $-%<4& 1%"(#D& 7-&.%)-& %*& %11-.21& 1/& #".8(%1-& %& #"."(%3& #"18%1"/*& "*& 1$-& 6/*1->1& /0& /83&

./)-(=&,$-&./)-(D&2%3%.-1-3#&%*)&#".8(%1"/*&3-#8(1#&0/((/7&"*&1$-&#8:#-C8-*1&#-61"/*#=&
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P8()XQ$4+-4-)0,-45)&+-)9/;.5&$/,+):&%&;4$4%#

H-&6/*#")-3&%*&->1-*#"/*&/0&1$-&./)-(&"*&7$"6$&3-C8-#1#&/0&#"5-&E,&%33"<-&%1&1$-&#-*)-3&%*)&

%3-&0/37%3)-)& 1/& 1$-&0"3#1&3/81-3=&,$-&#"5-#&/0&3-C8-#1#& I"=-=D& 1$-&*8.:-3&/0&%33"<%(#& "*&-%6$&

3-C8-#1J&%3-&)"#13":81-)&%66/3)"*;&1/&%&138*6%1-)&E%3-1/&)"#13":81"/*&I%*)&#/&1$-&%::3-<"%1"/*&

E,& "#& 8#-)& "*& 0";83-& a=AJ=& ,$-& 1".-& :-17--*& 1$-& 3-C8-#1#& "#& ->2/*-*1"%((4& )"#13":81-)& I%#&

->23-##-)&:4&F&0/3&F%39/<"%*&"*&0";83-&a=AJ=&&i/1$&3/81-3#&$%<-&->2/*-*1"%(&#-3<"6-&1".-#&

%#&:-0/3-D&%*)&1$-&3-#1&/0&1$-&*-17/39&3-.%"*#&1$-&#%.-&%#&)"#68##-)&"*&S-61"/*&Q=&

G/7)P8()0,-45),A)&)$=,)+,-4)$&+-4;)+4$=,%E),A);,"/54)%,.$4%#)=/$>):,/##,+)&%%/?&5#)$>&$)>&?4)$%.+'&$4-)

:&%4$,)-/#$%/".$4-)"&$'>)#/S4#

,$-&#".8(%1"/*&2%3%.-1-3#&%3-&1$-&#%.-&%#&"*&1%:(-&_7?+1@#1:*+=+A<(#<+(4+#<$41'+*$+B1+

Ajg]g&%33"<%(#&2-3&#-6/*)=&M/3&1$-&;-*-3%1"/*&/0&138*6%1-)&E%3-1/&:%16$-#D&1$-&2%3%.-1-3#&

8#-)&%3-&%#&0/((/7#m

,&-&*"(&&D&&&&E)H)33&%33"<%(#`#-6/*)&&&%*)&&&;)H)33IIII&%33"<%(#`#-6/*)

,$"#& 3-#8(1#& "*& %&.-%*& 3-C8-#1& #"5-& /0& aa& 2%69-1#& 2-3& #-6/*)=& !#& %& 3-#8(1& 1$-&.-%*&

%33"<%(& 3%1-&/0& 1$-&2%69-1#&3-%6$"*;&1$-&#-*)-3&*/)-&:-6/.-#&6/.2%3%:(-& 1/& 1$%1&8#-)& "*&

1$-&->2-3".-*1#&6%33"-)&/81&:-0/3-=&,$"#&$%#&:--*&)/*-&#/&1$%1&1$-&3-#8(1#&6%*&:-&6/.2%3-)&

7"1$&1$/#-&/0&1$-&23-<"/8#&#".8(%1"/*#=&,$-&./1"<%1"/*&0/3&$%<"*;&%&.-%*&3-C8-#1&#"5-&/0&

aa&2%69-1#&2-3&#-6/*)&6/.-#&03/.&1$-&)"#68##"/*&1$%1&0/((/7#=&

!& 3-;8(%3& \1$-3*-1& 03%.-& 8#-#& %& 03%.-& 0/3.%1& 1$%1& ("."1#& 1$-& #"5-& /0& 1$-& 2%4(/%)& "1&

#-*)#&1/&A]gg&:41-#=&S/&%*4&)%1%;3%.&:";;-3& 1$%*&A]gg&:41-#&$%#&1/&:-&03%;.-*1-)=&,$-&

.%>".8.& #"5-& 2-3."11-)& 0/3& %*& LE<a& )%1%;3%.& "#& ba& '"(/:41-#& "=-=D& b]D]_b& :41-#=& !&

03%;.-*1%1"/*&/0&%&)%1%;3%.&/0&1$%1&#"5-&1/&:-&#-*1&/<-3&\1$-3*-1&7/8()&63-%1-&3/8;$(4&aa&

2%69-1#=&

,$-& #%.-& #".8(%1"/*& 7%#& 0"3#1& 1/& :-& )/*-& 7(*<+ >+ #<$41'+ )4+ 678+ B&*+ *<)*+ 21),+ *$+ )'+

->13-.-(4& (/7&81"("#%1"/*& /0& 3/81-3#& -<-*&7"1$&<-34& (%3;-&:800-3#=&O-*6-D&7-&)-6")-)& 1/&

&41+ >+ )4+ C76+ 5$9+ *<(4+ '1A+ 41*+ $5+ 4(%&2)*($'4D+ A<(#<+ ;"<-#& %& .86$& $";$-3& 81"("#%1"/*&

2-36-*1%;-=& M/3& 1$-& #%9-& /0& #".2("6"14D& 1$-& 1-3.& E/"##/*KE%3-1/& %33"<%(#& 7"((& :-& 8#-)& 1/&

3-0-3&1/&1$-&%33"<%(#&1$%1&%3-&"*)-2-*)-*1&%*)&")-*1"6%((4&)"#13":81-)&7"1$&->2/*-*1"%(&"*1-3&

%33"<%(&1".-#&:81&$%<-&138*6%1-)&E%3-1/&)"#13":81-)&:%16$&#"5-#=&
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P83)9/;.5&$/,+)%4#.5$#),A):,/##,+R:&%4$,)&%%/?&5#

M";83-&a=Q&#$/7#&%&2(/1&/0&1$-&FG,&%#&"1&<%3"-#&7"1$&%*&"*63-%#-&"*&1$-&3-#-*)&23/:%:"("14&

7$-*&:/1$& %33"<%(& :800-3#& %3-& /0& #"5-&Ag& %*)& 3-6/<-34&:800-3#& %3-& /0& #"5-&_g=&FG,& 0"3#1&

;/-#&)/7*&%#&1$-&3-#-*)&23/:%:"("14&"*63-%#-#&03/.&g&1/&g=AD&%*)&1$-*&#1%31#&;/"*;&82=&,$-&

#%.-& 2$-*/.-*/*& 7%#& /:#-3<-)& "*& 6%#-& /0& 138*6%1-)& E%3-1/& %33"<%(#D& %*)& 1$-& #%.-&

3-%#/*"*;& 6/8()& :-& %22("-)& $-3-=& V8-& 1/& :83#14& 13%00"6D& %#& 1$-& 3-#-*)& 23/:%:"("14& "#&

"*63-%#-)& 03/.&g& 1/& g=AD& ./3-& 2%69-1#& ;-1& 3-#-*1& :81& 1$/#-& 1$%1& )/& ;-1& 3-#-*1& #--& 0%"3(4&

-.214&:800-3#&%*)&5"2& 1$3/8;$& 1$-&#4#1-.&"*6833"*;&%& #.%((-3&)-(%4=&N<-3%((D& 1$"#&:3"*;#&

)/7*&1$-&%<-3%;-&3-#2/*#-&1".-&:-6%8#-&7-&%))&1".-#&#.%((-3&1$%*&1$-&23-<"/8#&%<-3%;-=&

H$-*&1$-&3-#-*)&23/:%:"("14&"#&"*63-%#-)&0831$-3D&1$-&#4#1-.&9--2#&;-11"*;&./3-&%*)&./3-&

/<-3&63/7)-)&1$8#&3-#8(1"*;&"*&%&$";$-3&3-#2/*#-&1".-=&,$-&#%.-&3-%#/*"*;&6%*&:-&%22("-)&

1/&1$-&3-#8(1#&#$/7*&"*&0";83-&a=_&7$-*&1$-&%33"<%(&:800-3&"#&6$%*;-)&1/&_g=

U/.2%3"*;&0";83-#&a=Q&%*)&a=_&7-&#--&1$%1&1$-&FG,&%618%((4&;/-#&82&7$-*&1$-&%33"<%(&

:800-3&"#&_g=&,$"#&"#&:-6%8#-&1$-&.-%*&C8-8-&7%"1&"*63-%#-#&%#&1$-&%33"<%(&:800-3&6%*&C8-8-&

82&./3-&2%69-1#=&U/*#-C8-*1(4D&1$-&%<-3%;-&3-#2/*#-&1".-&/0&1$-&2%69-1#&"*63-%#-#=

G/7)P83)012)?4%#.#)%4#4+-)D%,"&"/5/$@)A,%):,/##,+)

&%%/?&5#) =/$>) $%.+'&$4-) :&%4$,) "&$'>4#) =>4+) $>4)

#/S4),A)$>4)&%%/?&5)".AA4%)/#)(I

G/7)P8<)012)?4%#.#)%4#4+-)D%,"&"/5/$@)A,%):,/##,+)

&%%/?&5#) =/$>) $%.+'&$4-) :&%4$,) "&$'>4#) =>4+) $>4)

#/S4),A)$>4)&%%/?&5)".AA4%)/#)<I

P8<)Y,;D&%/#,+),A):,/##,+R:&%4$,)=/$>)0B0B()&+-)2:B0B()F.4.4#

L*&1$"#&#-61"/*D&7-&6%334&/81&%&6/.23-$-*#"<-&6/.2%3"#/*&/0&1$-&)"00-3-*1&142-#&/0&%33"<%(&

23/6-##-#& 1$%1& 7-& $%<-& )"#68##-)& #/& 0%3& :4& 6/.2%3"*;& 1$-&FG,& 683<-#& 0/3& -%6$& 6%#-=&

M";83-& a=a& #$/7#& 1$-&FG,&2(/1& 0/3&!"& f& Ag& %*)&G"& f& _g=& ,$-&FG,& "#& (/7-#1& 0/3& 283-&

E/"##/*&%33"<%(#& %*)& $";$-#1& 0/3&E%3-1/&:%16$&%33"<%(#=&,$-&E/"##/*KE%3-1/&23/6-##& $%#&%&

FG,&1$%1&"#&<-34&6(/#-&1/&1$-&FG,&/0&:%16$&E/"##/*&%33"<%(#D&7$-3-%#&E%3-1/&8*"1&%33"<%(#&

/<-3-#1".%1-& 1$-&3-#2/*#-& 1".-=&H$"(-&1$-&FG,&/0&1$-&E/"##/*KE%3-1/&23/6-##& "#&6(/#-(4&

.%16$-)&7"1$&1$%1&/0&E/"##/*&:%16$&%33"<%(#&7$-*&!"&"#&AgD&1$-&#%.-&"#&*/1&138-&0/3&1$-&6%#-&

/0& !"& _gD& #--& 0";83-& a=]=& ,$-&FG,& "*& 1$"#& #6-*%3"/& "#& .86$& $";$-3& 0/3& E/"##/*KE%3-1/&

%33"<%(#&1$%*&0/3&E/"##/*&:%16$&%33"<%(#=
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G/7) P8P 012) ?4%#.#) %4#4+-) D%,"&"/5/$@) A,%) &55)

$@D4#),A)&%%/?&5#)=/$>)&%%/?&5)".AA4%)'&D&'/$@)4F.&5)

$,)(I)D&'E4$#)&+-)%4',?4%@)".AA4%)'&D&'/$@)4F.&5)$,)

<I)D&'E4$#

G/7) P8M 012) ?4%#.#) %4#4+-) D%,"&"/5/$@) A,%) &55)

$@D4#),A)&%%/?&5#)=/$>)&%%/?&5)".AA4%)'&D&'/$@)4F.&5

$,)<I)D&'E4$#)&+-)%4',?4%@)".AA4%)'&D&'/$@)4F.&5)$,)

(I)D&'E4$#

N*& 0831$-3& "*<-#1";%1"/*D& "1& 7%#& 3-<-%(-)& 1$%1& 1$-& 3-)86-)& FG,& "*& 6%#-& /0&

E/"##/*KE%3-1/& %33"<%(#& "#& */1& :-6%8#-& 1$-& 23/6-##& "1#-(0& 2-30/3.#& 0%#1-3& 1$%*& 1$-& E%3-1/&

%33"<%(& 23/6-##=& ,$-& %618%(& 3-%#/*& 0/3& %& (/7-3& FG,& /0& E/"##/*KE%3-1/& %33"<%(#& "#& %*&

"*63-%#-&"*&1$-&(/##&3%1-&%*)&%&)-63-%#-&"*&#-3<-3&81"("5%1"/*&%#&)-2"61-)&:4&0";83-#&a=b&%*)&

a=j&3-#2-61"<-(4=&S"*6-&./#1&/0&1$-&2%69-1#&;-1&)3/22-)&%*)&/*(4&%&<-34&0-7&/0&1$-.&%3-

#866-##08(&"*&3-%6$"*;&1$-&3-6-"<-3D&1$-&%<-3%;-&/0&3-#2/*#-&1".-#&/0&1$-#-&0-7&2%69-1#&"#&

(-##&%#&6/.2%3-)&1/&1$-&E%3-1/&23/6-##-#=

G/7)P8N):%,D,%$/,+),A)'.#$,;4%#)5,#$)-.4)$,)A.55)

&%%/?&5) ".AA4%#) ,A) 1,.$4%() ?4%#.#) %4#4+-)

D%,"&"/5/$@)=>4+)!/H(I)&+-)1/H<I)

G/7) P8L) Z$/5/#&$/,+) ,A) 1,.$4%() ?4%#.#) %4#4+-)

D%,"&"/5/$@) A,%) &%%/?&5) &+-) %4',?4%@) ".AA4%#) ,A) #/S4)

(I)&+-)<I)%4#D4'$/?45@

M Y,+'5.#/,+

,$-&#".8(%1"/*#&$%<-&:--*&3-2-%1-)&0/3&17/&)"00-3-*1&6$/"6-#&/0&%33"<%(&1/&3-6/<-34&:800-3&

3%1"/=& H$-*& %33"<%(& :800-3#& /0& 3/81-3#& %3-& #.%((D& 1$-& FG,#& %3-& #.%((-3& 1$%*& 7$-*& 1$-&

%33"<%(&:800-3#&%3-& (%3;-=&,$-& "*63-%#-)&C8-8-"*;&)-(%4&)8-&1/&(%3;-&:800-3#&"*63-%#-#&1$-&

323 A.K. Khan

UKPEW 2008 – http://ukpew.org/



FG,&/0&#866-##08(&2%69-1#=&L*&6%#-&/0&(%3;-&%33"<%(&:800-3#&I/0&#"5-&_gJD&1$-&3-#8(1#&%3-&(-##&

)-2-*)-*1&/*&1$-&3-#-*)&23/:%:"("14&1$%*&1$-4&%3-&"*&6%#-&/0&#.%((&%33"<%(&:800-3#&I/0&#"5-&

AgJD& %*)& (/##-#& %3-& %(#/& 3-)86-)=& O/7-<-3D& 1$-& <%3"%*6-& /0& 3-#2/*#-& 1".-& I7$"6$& 7%#&

6%(68(%1-)&%*)&2(/11-)& 0/3&%((& 1$-#-&6%#-#J& 0/3& 1$-&%33"<%(&:800-3&#"5-&_g&#6-*%3"/& "#&.86$&

$";$-3=& ,$-3-0/3-D& 1$-3-& "#& %& 13%)-K/00& :-17--*& (/7-#1& 2/##":(-& 2%69-1& (/##& %*)& $";$&

<%3"%:"("14&/0&3-#2/*#-&1".-D&%*)&1$-&6$/"6-&/0&%33"<%(&1/&3-6/<-34&:800-3&#"5-#&7"((&)-2-*)&

/*&1$-&142-&/0&%22("6%1"/*&%*)&1$-&2%3%.-1-3&1$%1&7-&%3-&134"*;&1/&."*"."5-=&

H$"(-& 1$-& 283-& E/"##/*& %##8.21"/*& 0/3& 1$-& #/836-& %33"<%(#& .%9-#& 1$-& 23/:(-.&

%*%(41"6%((4&13%61%:(-D&"1&"#&*/1&#8"1%:(-&1/&3-23-#-*1&1$-&$";$(4&6/33-(%1-)&*%183-&/0&./)-3*&

"*1-3*-1& 13%00"6&7$"6$& "#&:83#14&/<-3&.8(1"2(-& 1".-#6%(-#=&!(#/D& 1$-3-& "#& %& $";$&)-;3--& /0&

6/33-(%1"/*&%./*;&2%69-1&%33"<%(#&7$"6$&<"/(%1-#&1$-&E/"##/*&%##8.21"/*&/0&"*)-2-*)-*6-=&

N*-&.%d/3&#/836-&/0&6/33-(%1"/*&"#&1$-&23-<%(-*6-&/0&2%69-1#&:-"*;&#-*1&"*&:%16$-#=&S/&%#&

1$-& *->1& #1-2D& 7-& "*13/)86-)& 1$-& %33"<%(& /0& 2%69-1#& "*& 1$-& 0/3.&/0& :%16$-#& /0& 0">-)& #"5-&

7$"(-&9--2"*;&1$-&"*1-3K%33"<%(&1".-#&->2/*-*1"%(=&,$-&3-#8(1# /0&6/.2%3"#/*&7"1$&1$-&6%#-&

/0&8*"1&%33"<%(#&)-2"61-)&*/&#";*"0"6%*1&6$%*;-&"*&1$-&FG,=&

L*&/3)-3&1/&./)-(&1$-&:83#1"*-##&/0&%33"<"*;&2%69-1#&./3-&%6683%1-(4D&%&138*6%1-)&E%3-1/&

)"#13":81"/*&I7"1$&%*)&7"1$/81&0">-)&#"5-&:%16$-#J&7%#&8#-)&1/&./)-(&1$-&"*1-3K%33"<%(&1".-#&

/0& "*6/."*;& 2%69-1#=& H"1$& 1$"#& )"#13":81"/*D& 1$-& 8*)-#"3%:(-& -00-61#& I$";$& .-%*& %*)&

<%3"%*6-&/0& 3-#2/*#-& 1".-D&8*)-381"("#%1"/*&/0& #-3<-3#&%*)&$";$&(/##& 3%1-& "*&2%31"68(%3J&/0&

$-%<4&1%"(#&/*&2-30/3.%*6-&.-%#83-#&:-6/.-&%22%3-*1=&,$"#&"#&)8-&1/&1$-&:83#14&*%183-&/0&

%33"<%(#&"*&7$"6$&1$-3-&"#&("11(-&13%00"6&/<-3&(/*;&2-3"/)#&6/.:"*-)&7"1$&2-3"/)#&I:83#1#J&/0&

$-%<4&13%00"6=&H$-*&%&:83#1&/0&$-%<4&13%00"6&6/.-#D&1$-&%33"<%(&:800-3#&;-1&08((&1//&C8"69(4&

%*)&1$-&3-#1&/0&1$-&2%69-1#&;-1&)3/22-)=&!(#/D&#"*6-&1$-&#-3<-3#&%3-&")(-&0/3&%&(/*;-3&1".-&

)83"*;&1$-&2-3"/)&"*&7$"6$&1$-&13%00"6&"#&(/7D&1$-&#-3<-3&81"("#%1"/*&"#&3-)86-)=

!*&%*%(4#"#&/0&1$-&3-6-"<-3&%33"<%(#&#$/7#&1$%1&1$-&->1-3*%(&%33"<%(#&1$%1&%3-&->2/*-*1"%(&

.%"*1%"*& 1$-"3& ->2/*-*1"%(& 6$%3%61-3"#1"6#& :4& 1$-& 1".-& 1$-4& (-%<-& 1$-& C8-8-"*;& #4#1-.=&

O/7-<-3D&1$-&138*6%1-)&E%3-1/&%33"<%(#&#--.&1/&(/#-&1$-"3&2/7-3&(%7&23/2-31"-#&:4&1$-&1".-&

1$-4&3-%6$&1$-&3-6-"<-3=&,$"#&.";$1&$%<-&".2("6%1"/*#&"*&1$-&/21"."5%1"/*&03%.-7/39&%*)&

%*%(41"6%(& #/(81"/*#& 1$%1& 7-3-& 23/<")-)& "*& @QB& #"*6-& 1$-& %*%(4#"#& 7%#& :%#-)& /*& 1$-&

%##8.21"/*& 1$%1& 1$-& )-2%3183-& 23/6-##& 03/.& 1$-& 0"3#1& 3/81-3& "#& ->2/*-*1"%(=& N83& %*%(4#"#&

#$/7#& 1$%1&%&#"."(%3& %##8.21"/*&6%**/1&:-&%22("-)& "*& 1$-&6%#-&/0&%33"<%(#&7"1$& 138*6%1-)&

E%3-1/&)"#13":81-)&"*1-3&%33"<%(&1".-#=

M"*%((4D& %*& %33"<%(& 23/6-##& 7"1$& ->2/*-*1"%((4& )"#13":81-)& "*1-3K%33"<%(& 1".-#& %*)&

138*6%1-)&E%3-1/&)"#13":81-)&:%16$&#"5-#&7%#&6/*#")-3-)&"*&/3)-3&1/&3-23-#-*1&1$-&$-%<4&1%"(&

23/2-31"-#& /0& 1$-& 0"(-& #"5-& )"#13":81"/*& /:#-3<-)& "*& 3-%(& *-17/39#=& ,$-& 3-#8(1#& #$/7& %*&

%22%(("*;& :-$%<"/83& 7"1$& 2%69-1& (/##-#& :-"*;& 1$-&.%>".8.& /0& %((& 1$-& )"#68##-)& %33"<%(&

142-#&%*)&1$-&#-3<-3&81"("#%1"/*&:-"*;&1$-&."*".8.=&,$-&./)-(&0%"(#&1/&%66/../)%1-&1$"#&

142-&/0&%33"<%(&23/6-##&%*)&;"<-#&3-#8(1#&1$%1&%3-&*/1&0%</83%:(-&"*&3-%(&*-17/39#=

N)G.$.%4)=,%E

,$-&3-#8(1#&23-#-*1-)&"*&1$"#&2%2-3&%3-&/*(4&:%#-)&/*&#".8(%1"/*&%*)&1$-3-&%3-&*/&%*%(41"6%(&

3-#8(1#& 1/&<%(")%1-& 1$-.=&S/D& /*-&/0& 1$-& 1$"*;#& 1$%1& 6%*&:-& )/*-& "#& 1/&<%(")%1-& 1$-&./)-(&

8#"*;&%*%(41"6%(&1//(#=&

,$-& #2-68(%1"/*& 1$%1& 1$-& FG,& 0/3& E%3-1/& %33"<%(& 23/6-##& I%#& 7-((& %#& 0/3& E%3-1/&

)"#13":81-)&:%16$-#J&)"2#&7"1$&"*63-%#"*;&3-13%*#."##"/*&23/:%:"("14&)8-&1/&3-#-*1&2%69-1#&

./<"*;&C8"69(4& 1$3/8;$&1$-&*-17/39&"*6833"*;& (/7-3&)-(%4#D&*--)#&1/&:-&:%69-)&82&7"1$&
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-<")-*6-=&,$"#&6%*&:-&)/*-D&0/3&"*#1%*6-D&:4&6%(68(%1"*;&#-2%3%1-(4&1$-&FG,&/0&1$-&3-#-*1&

2%69-1#&1/&#--&7$-1$-3&1$"#&%618%((4&"#&1$-&6%#-&/3&*/1=

!#&->2(%"*-)&:-0/3-D&283-&,UE&13%00"6&$%#&*/1&:--*&6/*#")-3-)&#"*6-&1$-3-&"#&*/&*/1"/*&

/0&6/*;-#1"/*&6/*13/(&"*13/)86-)&"*&1$-&./)-(&#4#1-.=&S/D&%*/1$-3&)"3-61"/*&6%*&:-&1%9-*&

03/.&$-3-&"*&/3)-3&1/&#18)4&1$-&-00-61&/0&,UE&6/*;-#1"/*&6/*13/(&/*&1$-&./)-(P#&#1386183-&

%*)&2%3%.-1-3#=

,$-&C8%("14&/0&3%*)/.&*8.:-3#&;-*-3%1-)&:4&1$-&E#-8)/&G%*)/.&W8.:-3&?-*-3%1/3&

IEGW?J&"#&%*&".2/31%*1&%#2-61&"*&%*4&6/.281-3&#".8(%1"/*&%*)&)-2-*)#&/*&1$-&2-3"/)&/0&

1$-&EGW?=&,$-&(/*;-3&1$-&2-3"/)D&1$-&:-11-3&1$-&C8%("14&/0&1$-&EGW?=&,$-&6/)-&8#-)&0/3&

1$-& ./)-(& 23-#-*1-)& "*& 1$"#& 7/39& .%9-#& 8#-& /0& 1$-& F%1$=3%*)/.I& J& 08*61"/*& /0& h%<%=&

F%1$=3%*)/.I&J&8#-#&%&a^K:"1&#--)&@AQB&7$"6$&.-%*#&1$%1&1$-&2-3"/)&"#&<-34&#.%((=&!*/1$-3&

23/:(-.&7"1$&8#"*;&F%1$=3%*)/.I&J&"#&1$%1&"1&;"<-#&*/&6/*13/(&/<-3&1$-&#--)=&S/D&%&2/##":(-&

->1-*#"/*&/0&1$"#&#".8(%1/3&7/8()&:-&1/&".23/<-&1$-&EGW?&8#-)&"*&1$-&#".8(%1/3=&!&<-34&

2/7-308(&EGW?&%(;/3"1$.&"#&1$-&F-3#-**-&,7"#1-3&@lB&7$"6$&"#&0%#1-3&1$%*&F%1$=3%*)/.I&

JD&$%#&%&2-3"/)&/0&Q
All_j

KA&%*)&;"<-#&%&#1%1"#1"6%((4&./3-&3%*)/.&/81281=&U/(1&@A_B&6/*1%"*#&

1$-& h%<%& ".2(-.-*1%1"/*& /0& 1$-& F-3#-**-& ,7"#1-3& %(;/3"1$.=& ,$-& #".8(%1/3& 6%*& :-&

->1-*)-)&:4&"*6(8)"*;&1$"#&(":3%34&"*&1$-&6/)-&%*)&.%9"*;&"1&6/.2%1":(-&7"1$&1$-&->"#1"*;&

23/;3%.=

!'E+,=54-74;4+$

L& 7/8()& ("9-& 1/& 1$%*9& V3=& X("& O%3)-3& /0& L.2-3"%(& U/((-;-& c/*)/*& 0/3& $"#& 6/*1"*8/8#&

;8")%*6-&%*)&#82-3<"#"/*&)83"*;&1$-&6/83#-&/0&1$"#&23/d-61=&

14A4%4+'4#

@AB&?8(2"*%3D&W=D&O%33"#/*D&E=?=D&G8#1-.D&i=D&E%8D&c=KM=&!*&/21"."5%1"/*&./)-(&0/3&%&17/K*/)-&3/81-3&*-17/39=&
L*m&;*)C44:"9/8#)(# 7D4#+-7D# "974*9E7")9EF#8G3H)8"63#)9#I):4FF"9/,#%9EFG8"8,#E9:#J"36FE7")9#)(#!)3H674*#E9:#

24F4C)3369"CE7")98#JG87438#=I%J!52J#-AAK?,&n/(-*)%.D&W-1$-3(%*)#=&22=&AajoA]b

@QB&?8(2"*%3D&W=D&O%3)-3D&X=D&O%33"#/*D&E=?=D&M"-()D&!=h=D&G8#1-.D&i=&%*)&E%8D&c=KM=&F-%*K<%3"%*6-&2-30/3.%*6-&
/21"."5%1"/*&/0&3-#2/*#-&1".-& "*&%& 1%*)-.&3/81-3&*-17/39&7"1$&:%16$&%33"<%(#D&!F6874*#!)3H67"9/D&</(=&AgD&22&

Qg_KQAbD&h8*-&Qggj=
@_B& M"-()D& !=h=D& O%3)-3D& X("=D& O%33"#/*D& E=?=D& W-17/39& 13%00"6& :-$%<"/83& "*& #7"16$-)& \1$-3*-1& #4#1-.#=&

;4*()*3E9C4#LMEF6E7")9&</(&]^D&22=&Qa_oQbg&W/<-.:-3&Qgga

@aB0&+.&5)A,%)[*\C9)!:*) $112m``777=)/6="6=%6=89`p%d0`G-#-%36$`.%*8%(=2)0
@]B& c-(%*)D& H=D& ,%CC8D& F=D& H"(("*;-3D& H=D& H"(#/*D& V=& N*& 1$-& S-(0KS"."(%3& W%183-& /0& \1$-3*-1& ,3%00"6D&

JNO!5IID&All_&&

@bB&E%>#/*D&n=D&M(/4)D&S=&H")-K!3-%&,3%00"6D&,$-&M%"(83-&/0&E/"##/*&F/)-("*;D&NLLL.%!I#251D&All]
@jB&U3/<-((%D&F=D&i-#1%<3/#D&!=&S-(0KS"."(%3"14& "*&H/3()&H")-&H-:&,3%00"6m&\<")-*6-&%*)&E/##":(-&U%8#-#D&N9#

;*)C44:"9/8# )(# JNOIL2'N!J# PQRS# 2D4%!IN974*9E7")9EF# !)9(4*49C4# )9# I4E86*43497# E9:# I):4FF"9/# )(#

!)3H674*#JG87438,#;D"FE:4FHD"E,#;%
@^B&M/7(-3D&O=D&c-(%*)D&H=&c/6%(&%3-%&*-17/39&13%00"6&6$%3%61-3"#1"6#D&7"1$&".2("6%1"/*#&0/3&:3/%):%*)&*-17/39&

6/*;-#1"/*&.%*%;-.-*1=&&NLLL#TU#J4F4C7UU#%*4E8#!)3369UU,#M)FU#Q,#22=&AA_lKAAal=&S-21=&AllA=

@lB&04%#4++4)2=/#$4% $112m``777=.%1$=#6"=$"3/#$".%K8=%6=d2`p.K.%1`F,`-.1=$1.(
@AgB&Y&;45,$)Y5.#$4% $112m``%-#/2=)/6="6=%6=89`$-(2`;3%"(
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On the componentization of queue
solution methods

David J. Thornley∗

Abstract

An important relationship between the matix geometric and spectral
expansion solution representations for calculation of the equilibrium state
occupation probabilities of Markov modulated queues has recently been
reported. The complementary strengths and weaknesses motivate trans-
lation between the two in a general analysis framework to combine their
strengths. Further, coordinating the exactness of solution required in
some circumstances with the low time complexity demanded by iterative
optimization procedures motivates translation to and from approximate
schemes. We illustrate the opportunity to translate into an approximate
domain with an efficient statespace aggregaton queue solution approach.
We then draw a parallel between the extraction of the eigensystem from
the state-aggregated output with performing an equivalent translation
from the results of simulation. Translation to and from matrix exponen-
tial based queues, which provide an alternative to an explicit state space,
is motivated by the opportunity for simplified traffic matching.

1 Introduction

The requirement for a formal and general treatment of the inter-operability of
performability modeling approaches is clear. The fundamental theme of atom-
ization, annotation and translation is well described by Deavours et al [7] in
relation to the Möbius framework. This framework translates incoming model
components to a common representation and solves these through simulation
or numerical methods. Other unified modeling frameworks connect the com-
ponenets at other levels of abstraction, such as the TangramII integrated envi-
ronment [6], but these still address similar basic requirements, such as impulse
and rate reward modeling. The formulation of a model component, and its
implementation for inclusion in such regimes requires the identification of the
relationship between that models behaviour and the integration approach in-
herent to the framework.

Markov modulated queues are an important class of model commonly in-
corporated in such frameworks. Solution methods for queueing systems vary
widely, but the matrix analytic and geometric approaches solve a large class of
queues. Bini et al ’s release of the SMC-solver [4] (written in Fortran 90) is an
important contribution to the field of such solution methods for queues. The
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algorithms provided [3] in the release of the tool gather results of the authors’
research, and that of Neuts, Latouche and Ramaswami, and a contribution from
Akar and Sohraby. Crucially it is also intended that further components be in-
troduced by third parties. It provides a test bed for concrete comparison of
methods, and a focus for discussion vital to efficient academic interaction and
practical progress.

We are interested in issues surrounding the use of queue solution components
in a network solution framework. Matrix analytic and geometric methods are
applicable to a large class of queues described in recent work by Thornley and
Zatschler [22]. This analysis defines bounds on the descriptions of queues for
which a matrix generated solution is exact, and explains some circumstances
in which numerical instability occurs. Note also that it clarifies exactly why
spectral expansion is problematic around saturation through an analysis using
generalized eigenvectors. This necessitates the use of alternative methods to the
matrix analytic formulation under some circumstances which are defined as loci
in the space of queue parameterizations. This in turn necessitates consideration
of translation between methods to enable their use as substitutable components.

In this paper, we highlight shared structure in a range of queue solution
methods, which motivates investigation of componentization of queue solution
methods, for selection of the most effective .

2 Background

There are many practical methods in use for solving for the equilibrium state
occupation probabilities of Markov modulated queues with or without batches
(see [3] for examples). There are also a number of approaches to calculating
sojourn or response times exactly, such as [11, 13] for the generalized batched
queue [23], which construct the Laplace transform then invert this analytically),
and approximate approaches to calculation of network sojourn times e.g. [10]
which enable the calculation of network sojourn times. Each takes certain in-
puts, processes using a particular construction, and provides a specific output
form. For example, each queue solution method will take as input a description
of the arrival and service processes, and output terms which allow calculation
of the steady state, either exactly or approximately, perhaps as moments of the
distribution. Some important properties of the matrix geometric and analytic
approaches have recently been reported [22] which clarify the relationships be-
tween spectral and matrix generated solutions. This enables us to extend the
class of queues which are soluble exactly by analytic methods by the use of su-
perposed geometrically batched arrival, service and removal (negative customer)
processes in a single queue. This contradicts a long-held misapprehension that
the matrix analytic approach was entirely general, as disproven in [22].

If we can find pairwise translations between values required for alternate
methods, this will enable independent substitutions of these methods as com-
ponents in a framework. As well as simplifying the construction of a network
model, this will allow dynamic substitution of components, for example during
iterative solution over a network, a stability analysis of such a solution, or an
iterative optimization regime.

The matrix geometric representation writes a vector of state occupation
probabilities for a given queue length as vj = vRj . The limitations of this,
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proven in [22] can be illustrated succinctly by noting that Rj can be written as
WΛjWT (where W and Λ are the standard matrix of eigenvectors and diagonal
matrix of eigenvalue used when orthogonalizing a linear system), more clearly
illustrating the basis for generating the queue solution. From spectral expansion
of the queue, we see that there are up to NM eigenvalues, where N is the number
of environmental phases, and M is the transition range in the most compact
representation of the queue.

The three matrices commonly used for matrix geometric representation in
matrix analytic methods, R, G and U are related to each other in a simple
manner clearly explained in e.g. [3]. Thus, since queue solutions are gener-
ally iterative, these results may be passed to a new component brought in to
improve efficiency, or to enable a richer description of traffic while maintaining
throughput and the description of the processing. If we consider the relationship
between a matrix geometric component’s values and those of other methods we
find interesting challenges, whether the methods be approximate such as Mi-
trani’s recent introduction of the dominant eigenvalue approximation [16], or
exact such as in the rapidly evolving use of matrix exponential distributions as
exemplified by Akar’s work (e.g. [1]).

It should be noted that the number of modulation phases need not be high
to push the size of the eigensystem out of the range of matrix analytic ap-
proaches. A relatively simple processing node which takes a number of indepen-
dent batched input streams, such as might be approximated using a maximum
entropy solution for a generalized exponential description [14], requires a modi-
fied approach [22], since each independent batched process adds an eigenvalue.

3 QBD equivalent queues

Markov modulated queues soluble in tools such as the SMC solver exhibit a
large region in which the transition pattern can be defined independently of
that length. This results in a repeating pattern in the Chapman Kolmogorov
balance equations:

j−1∑

i=max(0,j−f)

viF(j − i) + vj [Q−
min(f,j)∑

k=1

D(Fk)−
min(b,L−j)∑

k=1

D(Bk)]

+
∞∑

i=j+1

viM(I − Φ)Φi−j−1 = 0

Vector vj holds the equilibrium state occupation probabilities of the queue at
buffer occupancy j and modulation phase corresponding to the vector element.
L is the maximum queue length, or waiting room size including the number
of processors. We use a set of forward transition rates Fk for jumps of length
1 ≤ k ≤ f , and a set of backward transition rates Bk. Each of L, f and b
may be finite or infinite. Interestingly, f and b may be notionally infinite even
if L is finite [23]. D(A) is a diagonal matrix comprising the row sums of A.
This notation is consistent with that used by Mitrani (e.g. [17, 16]). For more
discussion of such Chapman Kolmogorov balance equations in the context of
spectral analysis, see [16].
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Thornley and Zatschler prove that for f > 1 or b > 1, the matrix generated
solution may hold insufficient eigenvalues for a correct solution. However, it is
noted that if the transition matrices take a geometric construction, e.g. Fk =
Λ(I−Θ)Θk−1 and Bk = M(I−Φ)Φk−1, then the ensemble of balance equations
for the queue can be manipulated using full rank operations to “eliminate” the
infinite tails of the balance equation resulting in balance equations which arise
from a localized equivalent transition structure. We therefore call a queue with
structure amenable to this form of compaction a QBD equivalent. Thus, in
balance equation below, Λ is a diagonal matrix of Poisson rates for an arrival
process and Θ distributes the batch sizes. The service completions are in batches
distributed according to Φ, arriving as Poisson processes in each modulation
phase at rates given in M .

j−1∑

i=0

viΛ(I −Θ)Θj−i−1 + vj [Q− Λ−M ] +
∞∑

i=j+1

viM(I − Φ)Φi−j−1 = 0

If we refer to the full equation above as fj , then the QBD equivalent localized
repeating equation is given by cj = (fj − Θfj−1) − Φ(fj+1 − Θfj). Replacing
full equation fj with compacted equation cj in the ensemble preserves full rank
(see [23] for further details). The resulting compacted equation for queue length
j can then be written as follows:

vj−1Q0 + vjQ1vj + 1Q2 = 0

This balance equation describes the compact equivalent of queues analytically
soluble using a matrix basis. One of these queues is the geometrically batched
BMAP/BMAP/1 queue deszcribed earlier. In its infinite form, it is soluble
using matrix geometric approaches, and in its finite form, it can be analyti-
cally solved using an augmented matrix geometric form (see [22], or [2] for a
derivation from a closely related point of view). This is because the ensemble of
balance equations over the whole (possibly infinite) queue can be transformed
using full-rank column operations (recall that the vectors are left-multiplied) on
the ensemble of Chapman Kolmogorof probability flux equations for the whole
queue, resulting in a compact – and most importantly finite – form which gives
a quadratic matrix recurrence.

The manipulation regime described in [23] is a generalization of the approach
above, and provides a compact equivalent of a queue with multiple superposed
geometrically batched arrival, service and removal processes. In general the
compact equivalent transition system covers a range of M + 1 queue levels,
where M is equal to the sum of the largest equivalent forward batch transition
range and the largest backward. This results in a linear homogeneous matrix
recurrence relation of order M in square matrices of size N , so the characteristic
equation has up to NM solutions. In the QBD equivalent, this is 2N , N of which
are inside the unit disc.

Thornley and Zatschler [22] explain how this leads to a system which will
not collapse to a matrix quadratic, and discuss the resulting eigensystem size,
proving that a matrix generated series – or pair of such series – is insufficient
in the general case of such queues.
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4 Componentization

The agility of deployment of the latest techniques in integrated environments
is necessarily limited by the requirement for communication of the techniques,
and the facility of adaptation of the interfaces to those techniques to the frame-
work. We believe that this demands added emphasis in dissemination of novel
performance results on the limitations as well as the power of the result. In
addition, an explicit description of neighbourhoods of each method, in terms of
which alternative methods we might translate to and from, will assist research
at the level of integration frameworks. The neighbourhood of a technique is also
defined in terms of the method to which we might translate, as it describes a
region in the parameter space of the queue or network of queues being exam-
ined. In that region, it may be considered reasonable to use either method, and
a decision to translate into one or the other will weight up the cost of transla-
tion against the computation cost in subsequent calculations. For example, if a
queue will only stray into the neighbourhood of a competing solution method
for a small number of computations, then the translation cost may outweigh the
extra computation involved through not using the “better” method.

4.1 Translation

Many solution methods employ an iterative approach. During solution for per-
turbed network behaviour, perhaps as part of scenario exploration or parameter
sweeps to test the stability of a system, intermediate results of those methods
would ideally be stored for use in the next local iteration. If a component is to
be subsituted during this process, if the intermediate results can be passed on to
the new component either directly or through translation, efficieny is improved.
Use of alternate matrix analytic methods in this sense is ideal since the matrices
G, R and U are interchangeable, and derive their distinct identities from the
variant iterative methods.

In general, each translation may involve approximation and assumptions
about the system. Information about these must be preserved in annotations.
Complex solution systems will require meta-analyses of these attributes to track
the error bounds of the solution methods, especially in non-feed-forward net-
works where the emergence of complex behaviour in the errors may be antic-
ipated, which must be instrumented, as they may not be predictable. There
may be identifiable patterns for establishment of a componentization which can
be expected to beahave well, and anti-patterns describing combinations and or-
derings which fail. This is turn offers an opportunity to construct a database,
or ontology of suitable component combinations related to target applications.

4.2 Substitution

We believe that it is worth considering a scenario in which we formulate our
queue solution methods such that they may be easily substituted dynamically
in an overarching process of solution for network behaviour. For example, when
a queue reaches saturation, we may choose to resign ourselves to a loss of detail
for the sake of efficient feasibility of solution using an approximation.

For example, Mitrani [16] explains that the dominant eigenvalue method is
particularly effective under heavy loading for an infinite queue. While it is clear
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from the treatment that additional spectral components are important at lower
loading, we might expect the use of a method based on a matrix geometric solu-
tion to be an effective approximator in two clearly identifiable scenarios. From
[22] we note that for QBD equivalent processes, a matrix geometric soltuion
is theoretically perfect, computationally efficient, and only slightly disadvanta-
geous to numerical accuracy, when considering an infinite queue.

As well as translating between alternate exact methods, we may wish to
move in and out of approximations. This is necessary for example when we
wish to work from an initial estimate of network behaviour found from either
simulation, or approximating analytic methods which provide either worst case
analyses (e.g.[19]) or moment-based approximations (e.g.[14]). These are com-
monly necessary for a feasible solution which can include the effects of correla-
tion in networks with feedback or overtaking [21].

We suggest that significant value will be added to results of novel or im-
proved methods whose advantage is in high accuracy, low time complexity or
helpful approximation in particular parameterization ranges, if we can identify
complementary techniques in the literature which represent neighbours in the
space of parameterizations of networks.

When approximate solution mechanisms are used, the precise character of
the expected error must be maintained and passed on with the solution to sub-
sequent processing elements to enable results derived from them to be presented
with helpful error bounds. When asymmetric error bounds are guaranteed, for
example if the solution is strictly pessimistic (e.g. [19]), then it may be necessary
to include a periodic normalization or correction step in a global iteration step.

Matrix geometric and analytic solutions are exact for infinite quasi-birth-
death queues and equivalents, and while the eigensystem of the single or double
matrix solution is deficient for a more general class, it must be considered an
important approximation: Mitrani demonstrates that a single eigenvalue is an
operable approximation in heavily loaded queues, and the provision of a further
N − 1 eigenvalues by the matrix G (which is N by N , the number of environ-
mental phases), and in combination with matrix R, we have a total of 2N ([22]
describes this combination in the solution of a finite QBD equivalent queue).

5 Example: ETAQA and spectral expansion

ETAQA [20] provides a particular solution form in which the first n queue
lengths’ vectors of state occupation probabilities are provided, and the sum of
the remainder:

(v0, . . . ,vn−1,
∞∑

i=n

vi) (1)

This represents an exact result, but is not a complete, detailed characterization
of the equilibrium solution. Riska and Smirni have recently succeeded in gener-
alizing the solution domain of ETAQA to include systems which allow batched
downward transitions to more than one state and will output a solution for in-
finite queues of type GI/M/1 and M/G/1 and QBD. In their worked examples,
generally n = 1.

We do not discuss the mechanism by which this is calculated except to note
that ETAQA uses the same single matrix relationship between neighbouring
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state occupation probability vectors as other matrix analytic approaches. This
means that the solution is only exact for QBD equivalent systems. The solution
structure however appears amenable to inclusion of more generating matrices,
and output of state occupation probabilities at more levels of the queue.

We may also extract an approximation to the eigensystem, the simplest being
a single exponential decay and eigenvector equivalent. Mitrani’s approximation
of the eigensystem using the dominant eigenvalue is driven by solution from the
perspective of the system description, but ETAQA allows us to work from a
solution for the steady state to find an effective mean (eigenvalue,vector) pair
(ζ̄, ψ̄) from the output (v0, . . . ,vn−1,

∑∞
i=n vi):

ε2 =
n−1∑

i=0

∣∣vi − βζ̄jψ̄
∣∣
2

+
∣∣∣∣v
∗ − ζ̄n

1− ζ̄

∣∣∣∣
2

Then set
∂ε2

∂x
= 0, ∀x ∈ {β, ζ̄, ψ̄1 . . . ψ̄N}

This is a basic least squares solution, whose effectiveness for a specific purpose
would be optimized by synthesizing a suitable error weighting scheme in the
normal manner. N is the number of modulation phases of the system, and ψ̄i is
the mean eigenvector’s value in the corresponding phase i. In principle, we could
include more approximating eigenvalues and vectors, but this would increase
the size of the linear system we have to invert. In fact, it may be appropriate
to use a single eigenvector with a number of eigenvalues, which would allow
approximation of a heavy tailed distribution. The example G matrix entries
shown in in figure 5 of [4] indicate that the distribution among modulation
states may be narrow overall, leaving the detail in the marginal queue length.
Thus, thinking in terms of translation between methods has not only clarified
relationships, it has also motivated analysis of a new, feasible approximation.

Riska and Smirni suggest that ETAQA does not allow the calculation of the
exact steady state distribution of the queue, but with translation to an eigen-
system representation, this can be readily mapped out for use in e.g. sojourn
time calculation [11, 13] if sufficient queue levels are output. Thus translations
may be valuable both for network equilibrium solution components, and for
calculation of further measures.

6 Integration

It is tempting to suggest using the full eigenspectrum as the lingua franca in
the community of queue solution methods, since it always expresses the com-
plete behaviour. At the mathematical analysis stage, this and other formalisms
stretching back to those used in [8] are helpful. However, it is well known that
use of the explicit spectrum is problematic in a wide range of practical circum-
stances. In [22] we describe these circumstances, and outline some basic means
by which which they may be circumvented in the use of a matrix generated so-
lution. This includes an analysis using generalized eigenvectors to allow proofs
to include the locus of queue parameterizations which cause exact saturation.
However, this does not help us in practice, since saturation is instantaneous
with respect to changes in any given parameter. Instead, techniques from the
nummerical analysis literature must be introduced which are designed to cope
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with vagaries of eigenspectrum distortion and instability. One important ex-
ample of these is the use of the Schur form for matrices, which we see used
in invariant subspace solution research. This may motivate the substitution of
such an invariant subspace component during calculations near saturation.

Instability in the size of the eigenspectrum is effectively circumvented in the
single eigenvalue approximation provided by Mitrani [16]. The efficacy of the
approximation is analytically proven for heavy loading. However this may not
be a suitable component for substitution during the progress of an iterative
network calculation which is proceeding with a more expressive representation.
Sudden loss of detail, especially if in a batched system, may cause shocks due
to the strong effects of correlation in such circumstances [12]. This motivates
the development of a formal approach to specifying the locus of queue parame-
terizations for which a given solution method is not just effective in itself, but
crucially when it can act as a neighbour for other methods when substitution
in a specified network solution regime is required.

Translations back and forth between exact forms and a variety of approxi-
mations may be warranted in an automated system. This may be used, for ex-
ample, to seek out the range of network loads for which an existing deployment
is effective, and then to experiment with feasible adjustments to expand that
range. Commonly in an iterative scheme we establish an initial estimate, apply
cheap updates until the solution is near, then use more sophisticated techniques
to refine our view of the neighbourhood of the solution. This can be related
to, for example, the Levenberg-Marqardt method for non-linear optimization,
in which the computationally cheap approximation of steepest descent is used
for an initial rapid approach to the solution, followed by phasing in a more
expressive analytic approximation to the error surface to navigate the solution
towards its exact goal.

6.1 Simulation

Simulation is an intuitive and successful approach to characterizing basics of
network behaviour, including sojourn times. However, estimation of variance
and higher moments of measurescan be unstable. For this reason, analytic
models are a commonly a necessary complement to simulation. If we consider
the proposed theme of defining translations and annotations, we can compare
the requirement to translate from simulation results to queue models with that
from ETAQA. Queue length and system phase distributions can be noted from
simulation, and in principle we can apply the same translation from this to an
eigensystem representation.

If we wish to explore perturbation around a simulated behaviour, then we
have to translate that simulated solution into a parameterization of a mathe-
matical model (cf. [12]). The onus is then on the modeller to prove that the
model is appropriate in a clearly defined manner, and to provide measures with
distributions and/or bounds. Componentizing queue solution methods will en-
able this to be approached in a compositional manner, enabling the solution
for these values using the mathematical annotations of the components, rather
than having to synthesize a descritption from first principles for each network.
The solution may still take the form of an iterative numerical solution, but
as our understanding of the relationships between alternate methods improves,
opportunities to find compact, analytical solution will arise, such as those lever-

333 D.J. Thornley

UKPEW 2008 – http://ukpew.org/



aged by Schmitt et al [19] for an important class of approximations to provide
pessimistic bounds.

6.2 Approximation

Mitrani [16] explores the use of a single, dominant eigenvalue/vector pair to
solve a queue approximately. The effectiveness of the solution are clearly de-
scribed. This is therefore directly amenable to rendering as a component with
annotations describing the response of accuracy to load to guide a deployment
mechanism in a larger performability measurement modelling task.

As mentioned above, we can solve for a “mean” eigenvalue from ETAQA
output of state occupation probabilities which would tend to approximate the
system with errors related to the approximation provided by Mitrani from an
ab inito analysis of the queue description. We would be interested in this, for
example, if we wish to calculate sojourn times for the queue. Mitrani’s approxi-
mation is sufficient at high utilization, in which the constant associated with the
largest eigenvalue is dominant, and an ETAQA component may be substituted
a lower loadings for an efficient solution mechanism which nevertheless allows
us to capture the increased significance of the smaller eigenvalues by subsequent
translation to a single mean eigenvalue/vector pair.

Matching of matrix exponential traffic and processing characteristics []. The
number of eigenvalues required for the solution of a queue is generally NM , and
a matrix geometric solution provides N of these (since R = WΛWT ), so the
solution may be approximate in a similar sense to that of Mitrani [16] but with
a larger truncated eigensystem.

6.3 Matrix exponential queues

Fischer and Meier-Hellersten used matrix exponentials to analyse Markov mod-
ulated queues in an exposition of the range of Markov modulated queues [8].
More recently, Akar analyses queues explicitly formulated using matrix exponen-
tial distrbutions [1], and Fitzgerald et al [9] match matrix exponential random
variables to real sequences. Akar also provides a state space method for solving
queues with matrix exponential traffic [1]. These works, in combination with
Akar et al ’s work in invariant subspaces (we find [2] particularly informative),
make clear the importance of matrix exponential approaches to provide feasi-
ble solutions for interesting queuing models, especially because this provides
an additional key into matching real traffic essential to validating ad applying
theoretical work.

The matrix exponential distribution has a rational Laplace transform, ren-
dering its analysis simpler in many cases. Also, its relationship to certain classes
of state-space motivated queuing models is relatively straightforward. For ex-
ample, the PH/PH/1 queue as analysed by Neuts [18], and later generalized
by Latouche and Ramaswami [15] places a simple constraint on the parameters
of the distribution, conveniently described by Akar [1]. Where the relationship
between a state space model and the matrix exponential is clear, we expect the
translation to either a spectral expansion or matrix geometric/analytic method
to be straightforward.
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7 Discussion ad Conclusions

The establishment of a description for the locus of applicability, efficiency and
accuracy of solution methods will assist in the identification of progress in the
search for powerful solution mechanisms. Until we find the ultimate method
which solves all queueing problems optimally, we must work to leverage the
strengths of each individual approach. From the perspective of a team develop-
ing a given solution method, or teams contributing to approaches which occupy
a similar interface (as intended for collaborative environments such as SMC-
solver), a drive toward formalization of the relationship between that group of
methods and others with different interfaces will add value, through the ability
to hand over to another solution method in a manner provably appropriate over
a well defined domain.

As Mitrani suggests, we must consider whether it is worth trying to solve
analytic models exactly. The approximation he suggests enables approximate
solution for a number of network measures. The feasibility of simulation as a
proofing tool for system designs improves through academic community effort,
and can rival analytic modeling in the tradeoff between accuracy and execu-
tion time. We note that the result of a simulation can resemble the output of
ETAQA in terms of state occupation probabilities, for which we have suggested
a translation to a spectral representation. This, in combination with an approx-
imation to queueing rates will allow coordination of such results with analytic
measures.

We have previously [22] looked at a partition of the space of Markov modu-
lated queues which defines the range of applicability of a matrix generated solu-
tion. This range contains those queues whose system of balance equations may
be compacted without approximation to give a matrix quadratic eequivalent.
An example of a queue which inhabits this range is the geometrically batched
BMAP/BMAP, or MM CPP/GE/c/L form which corresponds to a queue ini-
tially examined in detail by Chakka and Harrison [5] without negative customers.
This confirms a requirement for alternative solution methods for queues which
fall outside this range. With the additional requirement for approximation in
many circumstances, this motivates the establishment of translation mechanisms
for analytic queue solution methods. Since the analytic common ground of the
whole eigensystem has not been demonstrated generally efficient in practice,
this requires pairwise analysis of methods which consitute “neighbours” in the
space of queue parameterizations to find efficient translations. As new solution
methods emerge, we suggest that value will be added, and future deployment
made simpler, by specifying how their envelope of advantageous deployment
interacts with their alternatives in both exact and approximate methodologies,
and investigating how their inputs, intermediate results, and outputs may be
interchanged.
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Parallelization of a Simulation of a peer
to peer market for Grid Computing

Fernando Mart́ınez Ortuño∗

Abstract

This paper focuses on a future Grid Computing market, which will
be based on a completely distributed structure, covering all possible com-
puting resources in the world. In this peer-to-peer market, nodes send
messages to each other, offering or asking for the use of computing re-
sources in exchange of real money. The paper proposes the parallelization
of a previous simulation program that described this market, as well as
the addition of new parameters and constraints.

1 Introduction

Grid Computing is a kind of distributed computing, formed by a network of
heterogeneous geographically-distributed computing resources, that can be used
to solve highly computationally-demanding tasks.

When tasks are submitted to the Grid in order to be solved, there must be
a way of discovering which resources are available at that moment and which
resources are allocated to solve each task. Since it is expected that lots of
tasks are submitted at the same time, each of them requiring different kinds of
resources and each of them demanding a different deadline, together with the
fact that the Grid itself is expected to achieve a worldwide scope, the job of
discovering and allocating the resources is not a trivial matter.

To solve this problem, several approaches have been taken; among them, the
idea of applying economic theories [1].

Inside the economic solutions, some centralized auction systems have been
used [2]. However, since these centralized systems have a single point of failure
and prevent the system from becoming larger, they do not represent a long-term
solution.
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An opposite alternative is to establish a complete decentralized economic
system: the Global Open Grid (GOG) [3], which consists of a world peer-to-peer
network in which nodes trade for computing resources by sending and receiving
messages to and from other nodes in the network. In GOG, the messages are
originally sent to the node’s neighbours and, if no matching offer is found, the
messages are re-sent from the neighbours to their respective neighbours in turn,
until a deal is found or until the time to live of messages expires. In this way, a
node only has information about the messages he receives from other nodes and
the deals he closes. Results of simulations of a simplified version of the GOG
are presented in [4].

[4] showed that most of the parameters that were analyzed in the model
reached an equilibrium independently of the network size. The evolution of
prices, on the other hand, followed a permanent increase or a permanent de-
crease, due to the lack of constraints in the nodes’ budgets.

This paper is built upon the simulation model used in [4], and it presents
some new additions and modifications, as well as a possible first parallel version
of the model.

2 MaGoG

This work assumes the MaGoG system as the future basis for the Grid Market.
MaGoG stands for ’Middleware for Activating the Global Open Grid ’, and its
complete description can be found in [3]. Basically, MaGoG is a peer-to-peer
based arquitecture that considers all computational resources in the world (from
mainframes to mobile phones) as part of the Grid Market. The arquitecture is
based on three main concepts: Catallaxy, the ’small-world’ networks and double
message flooding.

The Catallaxy paradigm of Austrian School economist Friedrich von Hayek
[5, 6] states that, in a descentralised competitive market where all entities aim to
maximize their utility, a spontaneous ’order for free’ will emerge via a complex
adaptive process, creating a stable state in the system without the need of a
central omniscient auctioneer. We do not expect, however, that this stability
in the system implies a stability in prices, since prices in the Grid Market will
permanently fluctuate in an endless game according to variations in offer and
demand, as it takes place in any other market, such as Currency Markets, Stock
Markets and Futures Markets. Consequently, the system will try and look for
the equilibrium state according to the market situation in a particular instant
of time, but this situation may change in the next instant of time, and so the
system will change its direction in an endless game in order to find the new
equilibrium state.

The second concept MaGoG is based on is the idea of the ’small-world’ net-
works, which is actually based on an observation by Stanley Milgram. According
to this observation, there are, on average, only six degrees of separation between
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any two individuals on Earth. Therefore, even in a potential future situation
where all computing resources in the world are connected in the Global Open
Grid, it will be possible for any node of the Grid Market, by passing messages
between peers, to reach any other node in the Grid with an average of only six
hops.

The third key concept MaGoG is based on consists of double message flood-
ing, together with the possibility of closing deals between two parties in a third
party node. This means that, in MaGoG, both buyers and sellers send their
messages to their peers in order to find a deal and, if in this process two match-
ing offers meet in a third party peer, a deal is closed between them in that
third party peer, avoiding further propagation of the first two nodes’ offers in
the Grid. In other words, every single peer of the Grid provides a pub, or trad-
ing floor, where messages (offers/orders) that were originally issued from other
peers in the Grid can meet and close deals. Consequently, this increases the
efficiency of the system and reduces considerably the volume of messages within
the network.

3 Our simulation model for MaGoG

The model we present in this paper is based upon the one described in [4],
which simulates the MaGoG system. However, from a programming point of
view, the model we introduce in this paper presents two basic differences with
the one in [4], specifically: the re-writing of the simulation program with an
object-oriented approach on the one hand, and its parallelization on the other
hand.

An object-oriented approach is considered more suitable, since nodes can be
represented by objects, and it gets closer to an agent-based simulation. Fur-
thermore, the object-oriented language facilitates the implementation of new
features, making the model more versatile.

The parallelization of the program will allow us to perform a simulation with
a larger number of nodes, since it will be possible to increase the memory the
program uses by making use of several processors’ memories. The fact of making
a simulation with a larger number of nodes will permit us to get results that
are nearer the reality, where a global network connecting all possible computing
resources in the world is expected to emerge [3].

On the other hand, the system to make deals between the messages that, at
a particular moment in time, are present in a node, is changed (compared with
[4]) . Actually, since the messages a node’s buffer receives come from nodes who
do not know, at least in principle, the prices the other nodes are asking/bidding,
this situation resembles the pre-trading status that takes place some minutes
before the stock exchange opens, when the opening price is decided in an initial
auction, and the order book is invisible for the traders. Deals in nodes’ buffers
are made now in this way, so that nodes’ buffers become real trading floors.
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A significative addition to the model presented in [4] is the establishment
of a system with three different types of agents: a group of permanent buyers,
a group of permanent sellers and a group of traders. The buyers model the
institutions that will demand computing power for their simulations, and they
will always want to buy resources; however, their buying attitude may change
depending on the current market price and their own budgets. The sellers model
all those people who will connect their home resources to the Grid, in order to
hire them when they do not need to use them (for instance at night); they have
no intention of buying computing resources and they just want to get some
money by hiring their computers. Finally, the traders are able to send buying
and selling orders to the Grid; their objective is to make money from the Grid
market by gaining the difference in price with buy/sell operations. We expect
that this system will help in bringing a more rational price evolution.

Although we do not present simulation results in this paper, we plan to
obtain them soon and publish them in a future paper.

3.1 The object oriented approach

The model we present in this paper has an object-oriented approach, in contrast
with the structural programming model that was presented in [4]. In this model,
we define the class Node, which includes among its members the attributes that
are common to all nodes in the network, such as a unique identifier, a list of the
node’s neighbours, the price the node is asking/bidding, etc. The class Node
also includes a long list of methods that can be invoked by the Node; these
methods are used to deal with the messages in the trading floor (pub/buffer) of
the node, to deal with the status of the node, to forward messages to the node’s
neighbours or to make the auction among the messages in the node’s floor and
to match deals between them.

From the base class Node, we construct three other derived classes: the class
Buyer, the class Seller and the class Trader. Objects of the class Buyer can only
issue buying messages, objects of the class Seller can only issue selling messages,
and objects of the class Trader can issue messages of both types. These three
derived classes inherit the members of the class Node and they also add new
methods that are exclusive of their classes. For instance, the class Trader adds
some trading strategies.

3.2 The way of making deals

The way of making deals that is implemented in this version of the model differs
from the one used in [4]. In [4], among the existing messages inside a node’s
trading floor, any two messages from a different type of node (buyer and seller)
that accomplish the price requirement (the price of the buyer is equal or higher
than the price of the seller) come to an agreement at a price which is the average
between the price the seller is asking and the price the buyer is bidding. In the
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present model, the matching of orders is made by an auction among all buying
and selling messages whose prices overlap. The result of the auction determines
the auction price and the consequent matching between the messages in the
trading floor; all deals in this case are made at the same price: the auction
price.

The algorithm we use to make the auction in the trading floor is similar to
the one used to calculate the opening price at the stock exchange. In particular,
we follow the algorithm used by the Australian Securities Exchange [7]. This
algorithm applies four conditional principles in order to decide the auction price,
which means that, if Principle 1 gives a clear result, the algorithm stops there,
whereas if no clear result is achieved with the first principle, then Principle
2 is applied and so on. An explanation of the algorithm can be found in [7].
Schematically, the four principles to determine the auction price are:

• Principle 1: Determining the Maximum Executable Volume

• Principle 2: Establishing the Minimum Surplus

• Principle 3: Ascertaining where the Market Pressure exists

• Principle 4: Consulting the Reference Price

4 The parallel version

In this paper we aim to introduce a first parallel version of the model presented
in [4]. Although this first parallel version is still in progress, we present in this
section some of the ideas that may be applied.

The objective of making a parallel version has to do with the fact that, by
using memory from several processors, we can increase the global memory of the
system and, consequently, make simulations with networks of a larger number
of nodes. Therefore, the first attempt is to make a parallel version by using
distributed-memory multiprocessors. In particular, we will use MPI (Message
Passing Interface) to make communication between processors possible.

The problem when trying to make a parallel version of this system is that,
in our case, we are not dealing with the classical structure that can be easily
parallelized. In other words, this is not the case where a master process, that
is in charge of the whole system, divides a heavy task into smaller ones and
sends each of these tasks to slave processes that solve them without having
to communicate in excess with each other. When each of the slave processes
finishes its task, they send the results back to the master process, that gathers all
the information and is able to solve the initial problem. In our case, in contrast,
there is no any big task to solve, and we have many nodes that communicate
frequently with each other, so communication between processes will also be
frequent.
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The idea we propose in this paper in order to parallelize the system is to
divide the network that forms the Grid into several parts, each part containing a
group of nodes. Each of those parts will be handled by a different processor, that
will be in charge of updating the nodes that belong to that part of the network.
As long as nodes in one part of the network do not need to send or receive
data from nodes that belong to a different part of the network, communication
between processors will not be necessary; the contrary otherwise.

There are two occasions where nodes have to exchange information between
them. One of the occasions occurs when a node has to forward the messages in
its floor or send its own messages to its nearest neighbours. The other occasion
takes place when, at the time of closing deals, it is necessary to know whether the
owners of the messages that are going to close a deal are still in the unsatisfied
state or not. Consequently, these will be the two occasions when processors may
need to communicate between each other.

Since MPI allows to define new data types that can be used as the basic unit
of communication between processors, we will create two new data types, that
correspond to the two occasions when processors need to exchange information
between them. One new type of data will correspond to the case when a pro-
cessor needs to ask another processor what the state of a node is. For this first
case, the type of data will be formed by two fields: one field that identifies the
node and another field that informs about the state of that node. The other
type of data corresponds to the case when processors send a message issued by
a node to another processor. For this second case, we create a new type of data
that has the same structure as the message that nodes send between each other.
Whenever the processors need to communicate with each other, they will use
one of these structures in order to send and receive information.

4.1 A practical example

To illustrate how the parallel version may work, let us consider a network of 32
nodes, which are handled by two processors: processor 0 and processor 1. In
order to facilitate the explanations, we will call processor 0 he, wheres processor
1 will be called she.

As explained above, the network is divided in several parts. In this case, as
there are only two processors, we divide the network in two parts, so that half
the nodes in the network will be controlled by processor 0 and the other half
will be controlled by processor 1 (see example in Fig. 1). Different partitioning
algorithms may be used to decide which nodes must belong to each part of the
network; we will not considered that discussion here.

Once the network is divided, the two processors start executing the code
concurrently. Consequently, each of the processors picks up a node that belongs
to their part of the network. The two processors carry out all the updates and
tasks in that node than can be done independently of the behaviour of the other
processor. And it is just before making the auction with the messages in the
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Figure 1: The network is divided in two parts. Each of the parts is controlled
by a different processor.

node’s trading floor when a first synchronization between the two processors
is necessary. Making the auction and assigning deals between messages in the
node’s floor is a critical part that can’t be executed simultaneously by two
processors, since the two nodes that are being updated could have messages from
the same node in their floors, which could lead to the same node closing the same
deal with two different nodes at the same time. To avoid this from happening,
we do not allow the two processors to make the auction in their respective
nodes at the same time. In order to achieve this objective, we synchronize both
processors by making use of the blocking mechanism inherent in some functions
of MPI. Figure 2 shows how the two processors synchronize and communicate
with each other in every lap of the loop.

We assume, for simplicity, that processor 0 has preference over processor
1 when it comes to make the auction, so processor 0 will make the auction
of the messages in its node’s floor before. Following the diagram of Fig. 2,
processor 0 starts the auction process. In this version of the model, before
making the auction, the processor checks, first of all, that the messages that are
going to participate in the auction do not have their TTL expired, on the one
hand, and that the messages do not belong to nodes that are in the satisfied
state at this moment, on the other hand. The TTL of the messages is directly
checked, whereas the state of the nodes that have issued the messages requires
communication with those nodes.

Therefore processor 0, after deleting old messages, checks who the owners of
the remaining messages are. If the owners are nodes that belong to the same
part of the network processor 0 is analyzing, he checks their state immediately.
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Figure 2: Schematic view of the synchronization and communication between
the two processors by using the blocking mechanism of the MPI functions in
every lap of the loop.

If the owners are nodes that belong to the other part of the network, processor 0
makes a list of these nodes, and sends a single request to processor 1, asking her
for the state of those nodes. If no messages from nodes in the other part of the
network are present in the trading floor that is being analyzed by processor 0,
processor 0 sends an empty request to processor 1. This is due to the fact that,
on the other hand, processor 1 has been blocked before making the auction of
the messages on her floor by a call to a receive function. Consequently, she is
expecting a request from processor 0 in order to continue with the execution of
the code. This is the reason why processor 0 will send, in any case, a request
to processor 1. After the send call is completed by processor 0, he continues
executing code and is blocked by a receive function, that forces him to wait for
the information that processor 1 has to send him.

On the other hand, processor 1 will have picked up a node in her part
of the network, she will have updated all the parameters that do not require
communication with processor 0, and she will have been blocked by a receive
call, that forces her to wait for the request from processor 0. Immediately after
she receives this request, processor 1 checks the state of the nodes in her part of
the network processor 0 has asked her to check, she packages all the information
and sends a unique send call to processor 0 with that information.

Processor 0 is then unblocked after receiving the send call from processor
1, and now he has all the necessary information to make the auction with the
messages in the node’s floor he’s analysing. After making the auction, some
of the messages in the node’s floor will not have made any deal, so they are
forwarded (if they have not been forwarded from this node before) to the nearest
node’s neighbours. Some of these neighbours may belong to the other part of
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the network, so process 0 makes a package with all messages that need to be
sent to nodes in the other part of the network, and sends the whole package
to process 1. If no messages have to be sent to the other part of the network,
process 0 creates an empty package and sends it to processor 1. In this case,
the basic unit of information that is sent between processors is the data type
that was defined for the messages that nodes send to each other.

On the other hand, processor 1, who was blocked by a call to a receive
function, receives the information package from processor 0, she unpackages it
and sends each of the messages to the nodes in her part of the network the
messages are addressed to.

At this moment, processor 0 has successfully completed the auction with the
messages in the node’s floor he was analyzing, so now processor 1 is the one
that can enter this critical part of the code and make her auction. For the case
of processor 1 making the auction, the above actions are repeated exactly in the
same way, but inverting roles between the two processors.

This naive mechanism of synchronization guarantees the simultaneous up-
date of the two nodes by the two processors without errors in the trades. The
mechanism can be extended to the use of more processors by the partitioning
of the network in more parts, each of them controlled by one processor.

5 Conclusion

This paper has proposed a new approach to the simulation model presented in
[4]. The re-writing of the model with object-oriented programming increases its
flexibility and allows us to incorporate new parameters easily, in particular in
relation to the attributes of the nodes.

The different way of making deals at the pubs of the nodes makes the trades
fairer. Although we do not present simulation results in this paper, preliminary
results show that the price evolution might follow, for this new version of the
model, a tendency that is independent on the kind of network, in contrast with
what happened in [4]. The way of making deals is, consequently, decisive in the
price evolution of the system.

On the other hand, we have described a possible first parallel version of the
system. Despite the difficulties associated with a model in which communication
between processes is continuous, we have shown a possible way to avoid conflicts
while processors try to execute simultaneous trades.

Furthermore, the parallel version of the system will allow us to study the evo-
lution of the system locally, i.e., the different evolution of the system depending
on the area of the network each processor is analysing.

We expect to obtain results of this version soon.
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State-Space Size Estimation By
Least-Squares Fitting

Nicholas J. Dingle William J. Knottenbelt ∗

Abstract

We present a method for estimating the number of states in the con-
tinuous time Markov chains (CTMCs) underlying high-level models using
least-squares fitting. Our work improves on existing techniques by pro-
ducing a numerical estimate of the number of states rather than classifying
the state space into on of three types. We demonstrate the practicality and
accuracy of our approach on a number of CTMCs generated from three
Generalised Stochastic Petri Net (GSPN) models with up to 11 million
states.

1 Introduction

A vital component of many correctness and performance analysis techniques is
the explicit enumeration of the state space underlying a high-level model such as
a Petri net or a process algebra specification. An early indication of likely state
space size is beneficial in a number of ways. For example, it provides the user
with a good idea of the computational resources (CPU time, number of CPUs,
memory, disk space etc.) that will be required to complete the analysis process.
If the estimate suggests that currently allocated resources are inadequate, the
process can be restarted early with increased resources The latter is particularly
useful in utility computing environments where charges are levied on a CPU hour
basis. Alternatively, a large estimate may persuade the modeller to apply an
alternative exploration or analysis strategy (e.g. using probabilistic methods [9,
11], or “on-the-fly” [2] approaches) or to revisit the level of abstraction employed
in the model.

However, with the exception of specialised models with restricted struc-
ture [12], there are few known techniques for estimating state space sizes from
high level models in the literature. An important recent work, and the inspi-
ration for our present investigation, is the paper of Pelánek and Šimeček [10]
in which various methods for estimating state-space sizes are discussed. The
methods fall into two main categories: those based on state sampling and those
based on the attributes of breadth-first state-space exploration.

The sampling-based approach works by taking two samples of the state
space, each containing s states, and comparing the states in each. Some num-
ber, x, will appear in both and the ratio x/s is then used to classify the size of
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begin
A = ∅
E = s0

F .insert(s0)
while F (not empty) do begin

F .remove(s)
foreach s′ ∈ succ(s) do begin

if s′ /∈ E do begin
F .insert(s′)
E = E ∪ s′

end
A = A ∪ id(s) → id(s′)

end
end

end

Figure 1: Breadth-first search algorithm for state-space exploration [8].

the total state space into one of three categories. The samples can be generated
by breadth-first search, depth-first search or a random walk.

The estimation from the attributes of breadth-first search also aims to clas-
sify the overall state-space size into the same three categories based the number
of states in the first k levels of the search. Estimation by human judgment, by
classification trees and by neural networks was conducted, as well as an inves-
tigation into combining these classification methods with the results from the
random-sampling approach to improve accuracy.

The major limitation of [10] is that the authors explicitly avoid estimating
the total number of states and instead confine themselves to placing the esti-
mated total state-space size into one of three categories (i.e. those models which
can be handled easily, those which may require state-space reduction or paral-
lel generation and those which are too large). In contrast, this paper presents
a method for dynamically estimating the number of states in the underlying
state-space of a high-level model. Our method uses least-squares fitting from
the number of states currently observed during the breadth-first state genera-
tion process. We demonstrate the accuracy of this technique on a number of
state spaces generated from three high-level Generalised Stochastic Petri Net
(GSPN) models.

The remainder of this paper is organised as follows: Section 2 briefly presents
the breadth-first state-space generation algorithm used the DNAmaca [7] steady-
state analysis tool, before Section 3 describes the method of least-squares fitting.
Section 4 then introduces the three GSPN models considered and demonstrates
how the fitting method can be used to predict accurately the total number
of reachable states whilst the state-generation process is underway. Finally,
Section 5 concludes and suggests directions for future work.
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Figure 2: The number of unexplored states during the state-space generation
process for three similarly-sized GSPN models.

2 Breadth-First Search

In DNAmaca [7], the breadth-first search algorithm shown in Fig. 1 is employed
to explore the model’s state-space. This starts from an initial state s0 and uses
a FIFO queue (F ) and a list of explored states (E) to generate the state graph
(A). The functions insert() and remove() add a state to and extract a state
from F respectively, while succ(s) returns the set of successor states of s. The
function id(s) returns a unique sequence number for state s. DNAmaca uses
a probabilistic hash-based scheme [7, 8, 9] to store E in a memory-efficient and
easily-searched manner. Breadth-first search is favoured over depth-first search
as it allows the continuous time Markov chain’s (CTMC’s) generator matrix Q
to be created and written to disk row-by-row without the need to maintain more
than one row in memory.

A guide to the progress of the state-space generation process can be gained
during the execution of the BFS algorithm by examining the number of states
in F . Fig. 2 shows how the length of F changes over the course of state-space
generation for three of the models described in Section 4.

3 Least-Squares Fitting Method

We observe that the shape of the graph in Fig. 2 can be approximated by a curve
with equation y = ax2 + bx, for some values of a and b. In order to find these
values we use the GNU Scientific Library (GSL) [4] to perform multiparameter
fitting using least squares. This fits a model of p parameters to n observations –
in our case, there are two parameters (a and b) and the observations are the
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Model Tangible
Name k States

courier2 2 84 600
courier3 3 419 400
courier4 4 1 632 600
courier5 5 5 358 600

fms5 5 152 712
fms6 6 537 768
fms7 7 1 639 440
fms8 8 4 459 455
fms9 9 11 058 190

Table 1: Number of tangible states in the Courier and FMS models in terms of
the sliding window size/ the number of unprocessed parts (k).

Model Patients Nurses Doctors Ambulances Tangible
Name (P ) (N) (D) (A) States

hosp1 7 2 2 1 54 228
hosp2 10 2 2 1 561 704
hosp3 11 4 2 2 1 630 905
hosp4 13 4 2 2 5 728 971

Table 2: Number of tangible states in the hospital model in terms of the number
of patients (P ), nurses (N), doctors (D) and ambulances (A).

current number of unexplored states in F during the BFS process. As the total
number of states can be very large, if we were to take observations at each
iteration of the BFS process we would potentially have several million and so,
to keep the problem size small, we only observe the number of unexplored states
once for every 10 000 states generated.

The first step in the fitting process is to express the problem in matrix-vector
form y = Xc where y is the vector of n observations, X is an n-by-p matrix of
the predictor variables and c is the vector of p unknown best-fit parameters. As
we are fitting a polynomial of degree 2 we define Xij = xij for 0 ≤ i ≤ (n− 1)
and 0 ≤ j ≤ (p − 1) . We then employ the gsl_multifit_linear() routine
(which implements the modified Golub-Reinsch singular valued decomposition
algorithm [5] with column scaling) to find the values of a and b which yield the
best fit to the observations.

4 Results

To demonstrate the power of our approach, we present results using three Gen-
eralised Stochastic Petri Net (GSPN) models. GSPNs are attractive as they
typically feature a small number of parameters (tokens) which can be easily
varied to produce CTMCs of differing sizes. The GSPN in Fig. 3 models the
ISO Application, Session and Transport layers of the Courier sliding-window
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Figure 3: GSPN model of the Courier communications protocol [13].
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Figure 5: GSPN model of patient flow in a hospital environment.
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Figure 6: Least-squares fitting estimation of the number of states in the Courier
model at 25%, 50% and 75% of the state generation process.

communication protocol [13]. Data flows from a sender (p1 to p26) to a receiver
(p27 to p46) via a network. The sender’s transport layer fragments outgoing
data packets; this is modelled as two paths between p13 and p35. The transport
layer is characterised by two important parameters: the sliding window size n
(p14) and the transport space m (p17). In our investigations we will be varying
n to produce varying sizes of state spaces.

Fig. 4 shows a 22-place GSPN model of a flexible manufacturing system [1].
The model describes an assembly line with three types of machines (M1, M2
and M3) which assemble four types of parts (P1, P2, P3 and P12). Initially,
there are k unprocessed parts of each type P1, P2 and P3 in the system. There
are no parts of type P12 at start-up since these are assembled from processed
parts of type P1 and P2 by the machines of type M3. When parts of any type
are finished, they are stored for shipping on places P1s, P2s, P3s and P12s.

Fig. 5 shows a GSPN model of a hospital’s Accident and Emergency depart-
ment. The key parameters in this model are the numbers of patients (P ), nurses
(N), doctors (D) and ambulances (A).

Table 1 shows the number of states in the underlying CTMCs for the Courier
and FMS models in terms of the parameters in the GSPN models. Note that
the first column gives a short name for each of the configurations by which we
will refer to it for the remainder of this paper. Likewise, Table 2 contains the
number of tangible states in the hospital model for various values of P , N , D
and A, along with an associated short name in the first column.
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Figure 7: Least-squares fitting estimation of the number of states in the FMS
model at 25%, 50% and 75% of the state generation process.
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Figure 8: Least-squares fitting estimation of the number of states in the Hospital
model at 25%, 50% and 75% of the state generation process.

Model Tangible 25% 50% 75%
Name States Estimate % Error Estimate % Error Estimate % Error

courier2 84 600 47 440 43.9% 72 617 14.2% 83 720 1.0%
courier3 419 400 180 880 56.9% 317 845 24.2% 404 244 3.6%
courier4 1 632 600 707 434 56.7% 1 153 623 29.3% 1 514 634 7.2%
courier5 5 358 600 2 458,700 54.1% 3 769 918 29.6% 4 824 976 10.0%

fms5 152 712 116 370 23.8% 149 793 1.9% 163 166 6.8%
fms6 537 768 375 743 30.1% 517 008 3.9% 570 206 6.0%
fms7 1 639 440 1 113 737 32.1% 1 548 048 5.6% 1 721 391 5.0%
fms8 4 459 455 2 982 118 33.1% 4 181 830 6.2% 4 671 613 4.8%
fms9 11 058 190 7 435 833 32.8% 10 304 305 6.8% 11 532 975 4.3%
hosp1 54 228 53 630 1.1% 61 825 14.0% 63 015 16.2%
hosp2 561 704 414 694 26.2% 582 222 3.7% 633 916 12.9%
hosp3 1 630 905 1 193 169 26.8% 1 666 353 2.2% 1 809 587 11.0%
hosp4 5 728 971 4 053 685 29.2% 5 784 496 1.0% 6 303 895 10.0%

Average error 34.4% 11.0% 7.6%

Table 3: Difference between the number of states predicted by least-squares
fitting and the actual number generated. Results are presented at three points
in the state generation process for each of the three GSPN models.
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The results of the estimation process using least-squares fitting are shown
graphically in Figs. 6, 7 and 8 for each of the three GSPN models. The estima-
tion was performed at three points in the state generation process where 25%.
50% and 75% of the total number of states had been generated. The number
of states predicted at each of these points for the three models, along with the
percentage error compared with the actual final amount, is given in Table 3.

We observe that early on in the state generation process the estimation of
the total number of states varies greatly from the actual number in all but the
smallest Hospital model (hosp1 ), with an average percentage error of 34.4%.
By the half-way stage, however, the estimate is usually much more accurate
(all within 7% in the case of the FMS model) and the average error falls to
11.0%. When three-quarters of the state space has been generated the esti-
mation further improves (with an average overall error of 7.6%), although the
accuracy does decrease compared with the half-way point estimate in the Hos-
pital model. Nevertheless, we believe that the ability to estimate to within
approximately 10% of the actual total number of states by the half-way point
in the generation process demonstrates the applicability of our technique.

5 Conclusion

We have demonstrated how least-squares fitting can be used to accurately esti-
mate the total number of states in the underlying CTMCs of high-level models
during the state generation process. Results from our experiments suggest that
estimates produced in this way do provide a good guide to the likely eventual
number of states. On average, an error of 11.0% in the predicted total was
observed at the half-way point in the state generation process.

With the accuracy of our technique demonstrated we will now investigate
incorporating it into DNAmaca and derived tools such as HYDRA [3]. In par-
ticular, it would be interesting to employ the dynamic process management
features of the MPI-2 parallel programming library [6], in conjunction with our
estimation method and a parallel state-space generator [8], to automatically
spawn extra processors when analysing large models.
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