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For Petri nets, Rabin introduced a concept of a weak Petri net computer, to prove that the reachability 

set inclusion/equivalence problem is undecidable [1], which computes a result equal to or less than the 

required. For instance, a weak multiplier, shown in Fig. 3, computes  𝑧 ≤ 𝑥 ∙ 𝑦. To compute 7 ∙ 6 we put 

7 tokens into x and 6 tokens into y and 1 token into s. The completion of the computations is indicated 

by the token arrival into f with result present in z. It can compute an exact product as well with the firing 

sequence 𝜎1 = 𝑡5(𝑡1𝑡3
𝑦

𝑡2𝑡4
𝑦

)𝑥𝑡6. Though, plenty of other permitted sequences give smaller values, for 

instance, 𝜎2 = 𝑡5𝑡6 computes result equal to zero.  

  

Fig. 1. A weak multiplier: 𝑧 ≤ 𝑥 ∙ 𝑦 [1]. 

Intuitive perception of a word “computer” leads us to an exact Petri net computer which pure 

implementation is possible only in Turing-complete extensions of Petri nets, for instance in inhibitor 

nets [1] applied in [2] for building a universal net in an explicit form. An exact computer of  𝑧 = 𝑥 ∙ 𝑦  is 

represented in Fig. 2. Inhibitor arcs ensure that the only permitted sequence is 𝜎1.  

 

Fig. 2. An exact multiplier (inhibitor net): 𝑧 = 𝑥 ∙ 𝑦.  
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For conventional Petri nets exact computers exist only under certain restrictions, namely when the 

values of each variable is bounded, for instance by value 𝑘. In this case, the complementary places 

concept [1] is applied and check on zero is replaced by the check of complementary place on 𝑘. The 

corresponding exact multiplier is represented in Fig. 3. The net is shown with its initial marking for 

computing  7 ∙ 6 = 42. We suppose that the source numbers are equal to or less than 10, then the 

result is bounded by the value 100. Complementary places have been created for x, y, z, 𝑝2, 𝑝3 and 

denoted using a prime symbol. 

 

Fig. 3. An exact multiplier: 𝑧 = 𝑥 ∙ 𝑦  under 𝑥, 𝑦 ≤ 10. 

Weak computers are useful in theoretical reasoning though from intuitional point of view they are no 

computers at all. Is it possible to make conventional Petri nets compute exact result without these 

unbecoming k-weighted arcs for complementary places? And we find the answer in legendary Lipton’s 

report [4] with his concept of a strong Petri net computer. 

In 1974 R.J. Lipton presented a construct [3] that proves that Petri net reachability problem has 

exponential space complexity. He introduced concepts of a parallel program and a strong computer. 

Lipton's parallel program contains four statements: start, accept, guess, and assign. A parallel program is 

a strong computer of a predicate when there is a reachable state with true/false result iff 

the predicate value is true/false, respectively. He stated that the acceptance problem for parallel 

program is reducible in polynomial time to the reachability problem for vector addition systems i.e. Petri 

nets.  

Thorough interpretation of Lipton's results regarding composition of corresponding Petri net has been 

given in J. Esparza paper [4]. Finally, he composed programs of four basic routines INC, TEST, and DEC 

and sequences of their direct and recursive calls. Though no explicit Petri net has been constructed, the 

routines allowed thorough and clear proof of Lipton's theorems. 

Here we construct explicit Petri nets which compute double exponent according to [3] using routines of 

Esparza [4]. These nets play a key part in Lipton’s proof when composing nets which implement 

predicates checking whether variables values equal zero.  The size of a net which strongly computes the 

double exponent 22𝑘
 depends linearly on the parameter 𝑘. Our program depn [5], for a given 𝑘, 

generates a Petri net which is a strong computer of 22𝑘
 . The net represents a sequence of 𝑘 blocks 



connected according to the scheme shown in the Cover Picture with a block enlarged. A block composes 

routines 𝐼𝑁𝐶𝑖, 𝑇𝑆𝑇_𝑦𝑖−1, 𝑇𝑆𝑇_𝑥𝑖−1,𝐷𝐸𝐶𝑖−1  and has size about 50 places and 50 transitions; the routines 

are represented separately in Fig. 4-6, respectively. Tests on zero 𝑇𝑆𝑇_𝑦𝑖−1, 𝑇𝑆𝑇_𝑥𝑖−1 differ only in using 

variables 𝑥𝑖 and 𝑥𝑖
′ instead of 𝑦𝑖  and 𝑦𝑖

′.  

A block contains three pairs of places with their compliments 𝑥𝑖 and 𝑥𝑖
′ , 𝑦𝑖  and 𝑦𝑖

′ , 𝑠𝑖 and 𝑠𝑖
′ . Subnet 

INC𝑖+1 multiplies 𝑥𝑖 = 22𝑖
 by 𝑦𝑖 = 22𝑖

 and stores the obtained result 22𝑖
∙ 22𝑖

= 22𝑖+2𝑖
= 22∙2𝑖

= 22𝑖+1
 

into the next block variables 𝑥𝑖+1, 𝑦𝑖+1, 𝑠𝑖+1
′ . Subnets TSTy𝑖, TSTx𝑖 test whether 𝑦𝑖  or 𝑥𝑖, respectively, 

equals zero. For testing a variable, the subnets try to decrement the variable value by 22𝑖
 with subnet 

DEC𝑖 which uses recursive calls of TSTy𝑖−1, TSTx𝑖−1 and so on till DEC0 is reached which represents the 

bottom of recursion implementing decrement by 220
= 2 in an explicit way. Variables 𝑠𝑖 and 𝑠𝑖

′  are 

used to pass parameters to the routine DEC𝑖.  

 

Fig. 4. Multiplication via increment  INC2.  

 

Fig. 5. Test on zero TSTy1. 

 

Fig. 6. Decrement by exponent DEC1. 

 



To grasp the concept of a strong computer, we should switch thinking of a Petri net computation as of a 

trace (a firing sequence of transitions) to thinking of it as of an entire reachability tree, which is 

considered as a nondeterministic computation. For instance, any trace of the net in Fig. 1 represents a 

weak computation leading to results in the range from 0 to 𝑥 ∙ 𝑦. The net in Fig. 2 runs the only trace 

which gives the exact result 𝑥 ∙ 𝑦. In Fig. 7 we show a reachability graph of the net de2.ndr which is a 

strong computer of 222
= 16. And the only marking with the place “fin-INC_2” (p71) containing a token 

belongs to it representing a state where the double exponent has been exactly computed: 

3707 : p10*2 p108*16 p109*16 p110*16 p13*2 p55*4 p56*4 p57*4 p72 p8*2 

that corresponds to 𝑥0 = 2   (𝑝8), 𝑦0 = 2 (p10), 𝑠0
′ = 2 (p13), 𝑥1 = 5 (𝑝55), 𝑦1 = 4 (p56), 𝑠1

′ = 4 (p57), 

𝑥2 = 16 (𝑝108), 𝑦2 = 16 (p109), 𝑠2
′ = 16 (p110). 

Thus the difference with a weak computation, that can be thought of as the entire reachability graph as 

well, consists in the fact that someone can recognize the exact result. The only marking containing an 

exact result is indicated with the marked final place. While for a weak computer any result in the range 

from 1 to 𝑥 ∙ 𝑦 can be indicated by the marked final place. 

 

Fig. 7. Computation of the de2.ndr (reachability graph): 𝑥2, 𝑦2 = 222
= 16. 

To build the net for a definite value of the parameter 𝑘, say 𝑘 = 2, we write the following command line 

>depn 2 > de2.ndr 

which creates file de2.ndr containing a Petri net strong computer of 222
 in the graphical format (.ndr) of 

modeling system Tina [6] according to the technique described in [7]. Tina offers either graphical tools 

integrated into a net editor nd or separate command line tools. In nd we can build a reachability graph 

with “reachability analysis” tool in verbose form and store it in a text file; then we search for “p71” in 

the text to find the only corresponding marking. 

Brief on-fly check without storing the entire reachability graph is implemented with 

>sift de2.ndr -f "-p71" 



When having space bounds and an algorithm for a certain problem, we can generate the corresponding 

strong computer after estimating its definite space complexity for given data. From this point of view we 

can compose parametric specification [7] of a strong Petri net computer and, after inputting data, 

generate an instance of the net appropriate for the given data size. Thus, we have a universal meta-

computer composed in the form of a parametric Petri net [7]. As a passage to the limit of this way of 

reasoning we come (from another side) to universality of infinite conventional Petri nets [8]. 

References 

1. Peterson J.L. Petri Net Theory and the Modeling of Systems, Prentice Hall, USA, 1981. 

2. Zaitsev D.A. Universal Petri net, Cybernetics and Systems Analysis, Volume 48, Number 4 (2012), 498-511.  

3. Lipton R.J. The Reachability Problem Requires Exponential Space, Technical Report 63, Yale University, 1976.  

4. Esparza J. Decidability and Complexity of Petri Net Problems - An Introduction. LNCS 1491, 1996, 374-428.  

5. Zaitsev D.A. Generator of Petri nets which count double exponent 2^2^k after R.J.Lipton & J.Esparza 

constructs, 16.06.2016, https://github.com/dazeorgacm/depn  

6. Berthomieu B. Time Petri Net Analyzer, http://projects.laas.fr/tina/  

7. Zaitsev D.A., Zaitsev I.D., Shmeleva T.R. Infinite Petri Nets as Models of Grids (pp. 187-204). Chapter 19 in 

Mehdi Khosrow-Pour (Ed.) Encyclopedia of Information Science and Technology, Third Edition (10 Volumes). 

IGI-Global: USA, 2014. 

8. Zaitsev D.A. Universality in Infinite Petri Nets. Proceedings of 7th International Conference, MCU 2015, 

Famagusta, North Cyprus, September 9-11, 2015, LNCS 9288, 180-197. 

 

 

https://github.com/dazeorgacm/depn
http://projects.laas.fr/tina/

