
 Introduction to
Artificial Intelligence

Dmitry A. Zaitsev
http://daze.ho.ua

http://daze.ho.ua/
http://daze.ho.ua/

 Introduction to
Artificial Intelligence

Dmitry A. Zaitsev
http://daze.ho.ua

http://daze.ho.ua/
http://daze.ho.ua/

Lesson 5
Logic for AI. Propositional calculus

Lesson 5
Logic for AI. Propositional calculus

A tool of analysis, a basis for knowledge representation, a
programming language. Kinds of logic.

Logic in AI

Atoms, logical connectives, and formulae syntax.
Interpretation of and classification formulae.

Formulae syntax and semantics

Truth table, algebraic transformation of formulae,
inference using rules. Resolution proof technique.

Check inference

Basic comands: constants, functions, assertions,
satisfability check, and model.

Automate reasoning in Z3

Logic in AI

• a tool of analysis

• a basis for knowledge representation

• a programming language

• application techniques:
– Logic programming

– Description logics

– Theorem proving

– Model construction

– Cognitive robotics

– Merging, updating, and correcting knowledge bases

Theorem-proving and model-construction techniques

Kinds of logic

• philosophical logic

• formalization of common sense and reasoning

• binary logic

• fuzzy logic

• circumscription

• modal logic

• casual logic

• temporal logic

Artificial Intelligence, Logic and Formalizing Common Sense

Propositional logic

• formalize propositions as atoms

• represent information as formulae using logical connectives:
– not

– and

– or

• go from information we already have to new information - reasoning
or inference

– modus ponens

– resolution

How to do

Logical representation of knowledge

• Syntax:
– Syntaxes are the rules which decide how we can construct legal sentences

in the logic.

– It determines which symbol we can use in knowledge representation.

– How to write those symbols.

• Semantics:
– Semantics are the rules by which we can interpret the sentence in the

logic.

– Semantic also involves assigning a meaning to each sentence.

Syntax and semantics

Z3 theorem prover

• Freeform Editing – online version:
 declare constants
 declare functions
 make assertions
 check satisfability

https://microsoft.github.io/z3guide/

Z
3

 o
n

li
n

e

Atoms

• Propositional calculus is a branch of logic that deals with
propositions, which can be true or false, and relations between
propositions, including the construction of arguments based on
them. Compound propositions are formed by connecting
propositions by logical connectives. Propositions that contain no
logical connectives are called atomic propositions. Examples:

The sun rises in the East
Paris is the capital of France

 A proposition is a declarative sentence that is either True or False, but not both

Logical connectives (operations)

• negation (¬P) – logical “not P”: when P is True, ¬P is False; and
when P is False, ¬P is True

• conjunction (P∧Q) – logical “P and Q”: is true in only case when
both are True, and is False otherwise. Other symbol &

• disjunction (P∨Q) – logical “P or Q”: is False in only case when both
are False, and is True otherwise

• implication (P→Q) – material conditional “if P then Q”: Q is true
whenever P is true

• identity (P↔Q) – biconditional joins "P if and only if Q“: P and Q
have the same truth-value

Truth table

All combinations of arguments’ values

P Q 𝑃 ∧ 𝑄 𝑃 ∨ 𝑄 𝑃 ⊕ 𝑄 𝑃 → 𝑄 𝑃 ↔ 𝑄

0 0 0 0 0 1 1

0 1 0 1 1 1 0

1 0 0 1 1 0 0

1 1 1 1 0 1 1

P ¬𝑃

0 1

1 0

False: 0
True: 1

ex
cl

u
si

ve
 o

r

not and or if
 P

 t
h

e
n

 Q

P
 if

 a
n

d
 o

n
ly

 if
 Q

Conjunction check in Z3

(declare-const p Bool)

(declare-const q Bool)

(define-fun conjecture () Bool

 (and p q))

(assert conjecture)

(check-sat)

(get-model)

Get a model that satisfies the function

sat

(

 (define-fun p () Bool

 true)

 (define-fun q () Bool

 true)

 (define-fun conjecture () Bool

 (and p q))

)

Using Z3 to check satisfability and tautology

• write formula in conventional way

• create tree of formulae

• write Polish prefix notation: (operation operand1 operand2)

• when traversing tree, write node mark, then left subtree,
then right subtree

Polish prefix notation of formulae

Z3 basic commands

• Declare constant

 (declare-const p Bool)

• Declare function

 (define-fun conjecture () Bool (and p q))

• Assert formula – add into Z3 stack

 (assert conjecture)

• Check satisfability of all formula in stack – there is an interpretation that makes
all asserted formulas true

 (check-sat)

• Get model – interpretation that makes formula satisfiable (for satisfiable
formula)

 (get-model)

Valid formulae

• atom is a valid formulae

• for any valid formulae x and y, the following formulae are valid:

¬x and ¬y
x ∧ y
x ∨ y
x → y
x ↔ y
(x) and (y)

Syntax

Language formalization example

“If today is Tuesday, I have a test in English or Science. If my English Professor is
absent, then I will not have a test in English. Today is Tuesday and my English
Professor is absent. Therefore I have a test in Science.“

T: Today is Tuesday

E: I have a test in English

S: I have a test in Science

A: My English Professor is absent

Assign variable symbols to propositions

Interpretation of formula

• An interpretation of a theory is the relationship between a
theory and some subject matter when there is a many-to-one
correspondence between certain elementary statements of the
theory, and certain statements related to the subject matter.

• The formal language for propositional logic consists of formulas
built up from propositional symbols (atoms) and logical
connectives. The standard kind of interpretation is a function
that maps each propositional symbol to one of the truth values
true or false.

Assignment of truth values to atoms

Logical equivalence

• Two formulae x and y are logically equivalent when for any
interpretation they have the same truth values – columns of
truth table coincide.

• Truth table for a formula (function) of n propositional
variables contains 2n values.

• Standard truth table considers False as 0 and True as 1 and
uses increment in binary numbering system to come to the
next interpretation starting from all zeroes.

Check using truth table

Classification of formulae

• satisfiable – is true under at least one interpretation

• tautology – is true in any possible interpretation (is
always true)

• contradiction – unsatisfiable statements (is always
false)

• logically contingent – is neither a tautology nor a
contradiction

Can be checked using truth table

Check reasoning in propositional logic

• Check tautology via composing truth table

• Equivalent algebraic transformation of
formula

• Logical inference using rules of reasoning

From inference to formula – conjunction of premises
implication conclusion

Can be checked but via NP-complete (exponential complexity) procedures

Check reasoning

Reasoning is correct when conjunction of premises implication conclusion is a tautology

(((𝑇 → 𝐸 ∨ 𝑆) ∧ (𝐴 → ¬E) ∧(T ∧A)) →S

Compose a formula

T E S A 𝐸 ∨ 𝑆 𝑇 → 𝐸 ∨ 𝑆 ¬E 𝐴 → ¬E T ∧A (...)∧(…)∧(…) (…)→S

0 0 0 0 0 1 1 1 0 0 1

0 0 0 1 0 1 1 1 0 0 1

0 0 1 0 1 1 1 1 0 0 1

0 0 1 1 1 1 1 1 0 0 1

0 1 0 0 1 1 0 1 0 0 1

0 1 0 1 1 1 0 0 0 0 1

0 1 1 0 1 1 0 1 0 0 1

0 1 1 1 1 1 0 0 0 0 1

1 0 0 0 0 0 1 1 0 0 1

1 0 0 1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 1 0 0 1

1 0 1 1 1 1 1 1 1 1 1

1 1 0 0 1 1 0 1 0 0 1

1 1 0 1 1 1 0 0 1 0 1

1 1 1 0 1 1 0 1 0 0 1

1 1 1 1 1 1 0 0 1 0 1

T
ru

th
 t

a
b

le

Check tautology in Z3
(declare-const t Bool)

(declare-const e Bool)

(declare-const s Bool)

(declare-const a Bool)

(define-fun conjecture () Bool

 (=> (and (=> t (or e s)) (and (=>
a (not e)) (and t a))) s)

)

(assert (not conjecture))

(check-sat)

Check satiability of negation

Output:
unsat

Algebraic laws of logic

𝐴𝑏𝑠𝑜𝑟𝑏𝑡𝑖𝑜𝑛 3: 𝑥 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑥

Equivalent algebraic transformation of formula

(((𝑇 → 𝐸 ∨ 𝑆)(𝐴 → ¬E)TA) →S=

= (((𝑇 ∨ 𝐸 ∨ 𝑆)(𝐴 ∨ 𝐸)TA) ∨ S = 𝑇 ∨ 𝐸 ∨ 𝑆 ∨ (𝐴 ∨ 𝐸) ∨ 𝑇𝐴 ∨ S=

= 𝑇𝐸 𝑆 ∨ 𝐴𝐸 ∨ 𝑇 ∨ 𝐴 ∨ S=𝑇𝐸 𝑆 ∨ 𝐸 ∨ 𝑇 ∨ 𝐴 ∨ S=

= 𝑇𝑆 ∨ 𝐸 ∨ 𝑇 ∨ 𝐴 ∨ S=𝑆 ∨ 𝐸 ∨ 𝑇 ∨ 𝐴 ∨ S=𝐸 ∨ 𝑇 ∨ 𝐴 ∨ 1=1

Replace implication: 𝑥 → 𝑦 = 𝑥 ∨ 𝑦

Algebraic style: conjunction omitted like multiplication,
 negation over variables and expressions

R
u

le
s

o
f

re
a
so

n
in

g
 –

in

fe
re

n
ce

 r
u

le
s

Proof by resolution technique

• Prove via contradiction

• Add negation of conclusion to premises set

• Apply resolution rule, adding results to the set
of formulae

• Obtain contradiction

Resolution (and disjunctive syllogism) rule

Resolution proof example

𝑇 ∨ 𝐸 ∨ 𝑆, 𝐴 ∨ 𝐸 , 𝑇, 𝐴, 𝑆

𝑥 ∨ 𝑦, 𝑥 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥, 𝑥 ∨ 𝑧

𝑧

Resolution rule: 𝑇 ∨ 𝐸 ∨ 𝑆, 𝑇

𝐸 ∨ 𝑆

𝐸 ∨ 𝑆, 𝑆

𝐸

𝐴 ∨ 𝐸 , 𝐸

𝐴

𝐴 , 𝐴

∎

L
o

g
ic

 f
o

r
h

a
rd

w
a
re

d

e
si

g
n

• Synthesize logic function

• Minimize logic function

• Compose scheme of gates

• An example – one bit adder:

𝑠 = 𝑥 ⊕ 𝑦 ⊕ 𝑐𝑖𝑛
𝑐_𝑜𝑢𝑡 = ((𝑥 ⊕ 𝑦) ∧ 𝑐_𝑖𝑛) ⊕ (𝑥 ∧ 𝑦)

Automated design in Verilog

Sequential adder of four bit numbers

Task 1

• For a given reasoning offer at least two verbal
interpretation in natural language

• Check reasoning manually via:
– truth table

– equivalent transformation of formulae

– resolution technique

• Check reasoning in Z3

Propositional logic – check reasoning

Variants for task 1

𝑃 → 𝑄, 𝑃 ∨ 𝑅 ⊢ 𝑄𝑅

𝑃 → (𝑄 → 𝑅), 𝑅 ⊢ 𝑄
𝑃𝑄 → 𝑅, 𝑅 ⊢ 𝑄 ∨ 𝑃

(𝑃 ∨ 𝑄) → 𝑅, 𝑅 ⊢ 𝑄 ∨ 𝑃

𝑃𝑄 ∨ 𝑅, 𝑄 → 𝑅, 𝑅 ⊢ 𝑃

𝑄 ∨ 𝑃, 𝑄 → 𝑅 ⊢ 𝑃 → 𝑅

𝑄 → 𝑃, 𝑃 → 𝑅, 𝑄 ⊢ 𝑅

𝑄 ∨ 𝑃, 𝑃 → 𝑅, 𝑄 ⊢ 𝑅

𝑄 → 𝑃,𝑄 → 𝑅, 𝑅 ⊢ 𝑃

(𝑄 → 𝑃) → (𝑄 → 𝑅), 𝑄 ⊢ 𝑅

0.

1.

2.

3.

4.

5.

6.

7.

8.

9.

Introduction to
Artificial Intelligence

Dmitry A. Zaitsev
http://daze.ho.ua

http://daze.ho.ua/

USA

FRANCE

BRAZIL

CHINA

LILLE

PARIS

SOPHIA

ANTIPOLIS

SK

SK

SK

SK

SK

SOUTH AFRICA

SK

Lesson 5
Logic for AI. Propositional calculus

