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Lesson 5  
Logic for AI. Propositional calculus 

A tool of analysis, a basis for knowledge representation, a 
programming language. Kinds of logic. 

 

Logic in AI 

Atoms, logical connectives, and formulae syntax. 
Interpretation of and classification formulae.  

Formulae syntax and semantics 

Truth table, algebraic transformation of formulae, 
inference using rules. Resolution proof technique. 

Check inference 

Basic comands: constants, functions, assertions, 
satisfability check, and model.  

Automate reasoning in Z3 



Logic in AI 

• a tool of analysis 

• a basis for knowledge representation 

• a programming language 

• application techniques: 
– Logic programming 

– Description logics 

– Theorem proving 

– Model construction 

– Cognitive robotics 

– Merging, updating, and correcting knowledge bases 

Theorem-proving and model-construction techniques 



Kinds of logic 

• philosophical logic 

• formalization of common sense and reasoning 

• binary logic 

• fuzzy logic 

• circumscription 

• modal logic 

• casual logic 

• temporal logic 

Artificial Intelligence, Logic and Formalizing Common Sense 



Propositional logic 

• formalize propositions as atoms 

• represent information as formulae using logical connectives: 
– not 

– and 

– or 

• go from information we already have to new information - reasoning 
or inference 

– modus ponens 

– resolution 

 

How to do 



Logical representation of knowledge 

• Syntax: 
– Syntaxes are the rules which decide how we can construct legal sentences 

in the logic. 

– It determines which symbol we can use in knowledge representation. 

– How to write those symbols. 

• Semantics: 
– Semantics are the rules by which we can interpret the sentence in the 

logic. 

– Semantic also involves assigning a meaning to each sentence. 

Syntax and semantics 



Z3 theorem prover 

• Freeform Editing – online version: 
 declare constants 
 declare functions 
 make assertions 
 check satisfability 

https://microsoft.github.io/z3guide/ 
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Atoms 

• Propositional calculus is a branch of logic that deals with 
propositions, which can be true or false, and relations between 
propositions, including the construction of arguments based on 
them. Compound propositions are formed by connecting 
propositions by logical connectives. Propositions that contain no 
logical connectives are called atomic propositions. Examples: 

The sun rises in the East 
Paris is the capital of France 

 

 A proposition is a declarative sentence that is either True or False, but not both 



Logical connectives (operations) 

• negation (¬P) – logical “not P”:  when P is True, ¬P is False; and 
when P is False, ¬P is True 

• conjunction (P∧Q) – logical “P and Q”:  is true in only case when 
both are True, and is False otherwise. Other symbol & 

• disjunction (P∨Q) – logical “P or Q”: is False in only case when both 
are False, and is True otherwise 

• implication (P→Q) –  material conditional “if P then Q”: Q is true 
whenever P is true 

• identity (P↔Q) – biconditional joins "P if and only if Q“:  P and Q 
have the same truth-value 



Truth table 

All combinations of arguments’ values 

P Q 𝑃 ∧ 𝑄 𝑃 ∨ 𝑄 𝑃 ⊕ 𝑄 𝑃 → 𝑄 𝑃 ↔ 𝑄 

0 0 0 0 0 1 1 

0 1 0 1 1 1 0 

1 0 0 1 1 0 0 

1 1 1 1 0 1 1 

P ¬𝑃 

0 1 

1 0 

False: 0 
True:  1 
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Conjunction check in Z3 

(declare-const p Bool) 

(declare-const q Bool) 

(define-fun conjecture () Bool 

    (and p q)) 

(assert conjecture) 

(check-sat) 

(get-model)  

Get a model that satisfies the function 

sat 

( 

  (define-fun p () Bool 

    true) 

  (define-fun q () Bool 

    true) 

  (define-fun conjecture () Bool 

    (and p q)) 

) 



Using Z3 to check satisfability and tautology 

• write formula in conventional way 

• create tree of formulae 

• write Polish prefix notation: (operation operand1 operand2) 

• when traversing tree, write node mark, then left subtree, 
then right subtree 

Polish prefix notation of formulae 



Z3 basic commands 

• Declare constant 

 (declare-const p Bool) 

• Declare function 

 (define-fun conjecture () Bool  (and p q)) 

• Assert formula – add into Z3 stack 

 (assert conjecture) 

• Check satisfability of all formula in stack – there is an interpretation that makes 
all asserted formulas true 

 (check-sat) 

• Get model – interpretation that makes formula satisfiable (for satisfiable 
formula) 

 (get-model) 



Valid formulae 

• atom is a valid formulae 

• for any valid formulae x and y, the following formulae are valid: 

¬x and ¬y 
x ∧ y 
x ∨ y 
x → y 
x ↔ y 
(x) and (y) 

Syntax 



Language formalization example 

“If today is Tuesday, I have a test in English or Science. If my English Professor is 
absent, then I will not have a test in English. Today is Tuesday and my English 
Professor is absent. Therefore I have a test in Science.“ 

T: Today is Tuesday 

E: I have a test in English 

S: I have a test in Science 

A: My English Professor is absent 

 

Assign variable symbols to propositions 



Interpretation of formula 

• An interpretation of a theory is the relationship between a 
theory and some subject matter when there is a many-to-one 
correspondence between certain elementary statements of the 
theory, and certain statements related to the subject matter.  

• The formal language for propositional logic consists of formulas 
built up from propositional symbols (atoms) and logical 
connectives. The standard kind of interpretation is a function 
that maps each propositional symbol to one of the truth values 
true or false. 

Assignment of truth values to atoms 



Logical equivalence 

• Two formulae x and y are logically equivalent when for any 
interpretation they have the same truth values – columns of 
truth table coincide. 

• Truth table for a formula (function) of n propositional 
variables contains 2n values. 

• Standard truth table considers False as 0 and True as 1 and 
uses increment in binary numbering system to come to the 
next interpretation starting from all zeroes. 

Check using truth table 



Classification of formulae 

• satisfiable – is true under at least one interpretation 

• tautology – is true in any possible interpretation (is 
always true) 

• contradiction – unsatisfiable statements (is always 
false) 

• logically contingent – is neither a tautology nor a 
contradiction 

Can be checked using truth table 



Check reasoning in propositional logic 

• Check tautology via composing truth table 

• Equivalent algebraic transformation of 
formula 

• Logical inference using rules of reasoning 
 

From inference to formula – conjunction of premises 
implication conclusion 

Can be checked but via NP-complete (exponential complexity) procedures  



Check reasoning 

Reasoning is correct when conjunction of premises implication conclusion is a tautology 

(((𝑇 → 𝐸 ∨ 𝑆 ) ∧ (𝐴 → ¬E) ∧(T ∧A)) →S 

Compose a formula 



T E S A 𝐸 ∨ 𝑆 𝑇 → 𝐸 ∨ 𝑆  ¬E 𝐴 → ¬E T ∧A (...)∧(…)∧(…) (…)→S 

0 0 0 0 0 1 1 1 0 0 1 

0 0 0 1 0 1 1 1 0 0 1 

0 0 1 0 1 1 1 1 0 0 1 

0 0 1 1 1 1 1 1 0 0 1 

0 1 0 0 1 1 0 1 0 0 1 

0 1 0 1 1 1 0 0 0 0 1 

0 1 1 0 1 1 0 1 0 0 1 

0 1 1 1 1 1 0 0 0 0 1 

1 0 0 0 0 0 1 1 0 0 1 

1 0 0 1 0 0 1 1 1 0 1 

1 0 1 0 1 1 1 1 0 0 1 

1 0 1 1 1 1 1 1 1 1 1 

1 1 0 0 1 1 0 1 0 0 1 

1 1 0 1 1 1 0 0 1 0 1 

1 1 1 0 1 1 0 1 0 0 1 

1 1 1 1 1 1 0 0 1 0 1 
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Check tautology in Z3 
(declare-const t Bool) 

(declare-const e Bool) 

(declare-const s Bool) 

(declare-const a Bool) 

(define-fun conjecture () Bool 

    (=> (and (=> t (or e s)) (and (=> 
a (not e)) (and t a))) s) 

) 

(assert (not conjecture)) 

(check-sat) 

Check satiability of negation 

Output: 
unsat 



Algebraic laws of logic 

𝐴𝑏𝑠𝑜𝑟𝑏𝑡𝑖𝑜𝑛 3: 𝑥 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑥 



Equivalent algebraic transformation of formula 

(((𝑇 → 𝐸 ∨ 𝑆 )(𝐴 → ¬E)TA) →S= 

= (((𝑇 ∨ 𝐸 ∨ 𝑆 )(𝐴 ∨ 𝐸 )TA) ∨ S = 𝑇 ∨ 𝐸 ∨ 𝑆 ∨ (𝐴 ∨ 𝐸 ) ∨ 𝑇𝐴 ∨ S= 

= 𝑇𝐸 𝑆 ∨ 𝐴𝐸 ∨ 𝑇 ∨ 𝐴 ∨ S=𝑇𝐸 𝑆 ∨ 𝐸 ∨ 𝑇 ∨ 𝐴 ∨ S= 

= 𝑇𝑆 ∨ 𝐸 ∨ 𝑇 ∨ 𝐴 ∨ S=𝑆 ∨ 𝐸 ∨ 𝑇 ∨ 𝐴 ∨ S=𝐸 ∨ 𝑇 ∨ 𝐴 ∨ 1=1 

Replace implication: 𝑥 → 𝑦 = 𝑥 ∨ 𝑦 

Algebraic style: conjunction omitted like multiplication,  
                             negation over variables and expressions 
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Proof by resolution technique 

• Prove via contradiction 

• Add negation of conclusion to premises set 

• Apply resolution rule, adding results to the set 
of formulae 

• Obtain contradiction 

Resolution (and disjunctive syllogism) rule 



Resolution proof example 

𝑇 ∨ 𝐸 ∨ 𝑆, 𝐴 ∨ 𝐸 , 𝑇, 𝐴, 𝑆  

𝑥 ∨ 𝑦, 𝑥 ∨ 𝑧

𝑦 ∨ 𝑧
 

𝑥, 𝑥 ∨ 𝑧

𝑧
 

Resolution rule: 𝑇 ∨ 𝐸 ∨ 𝑆, 𝑇

𝐸 ∨ 𝑆
 

𝐸 ∨ 𝑆, 𝑆  

𝐸
 

𝐴 ∨ 𝐸 , 𝐸

𝐴 
 

𝐴 , 𝐴

∎
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• Synthesize logic function 

• Minimize logic function 

• Compose scheme of gates 

• An example – one bit adder: 

𝑠 =   𝑥 ⊕ 𝑦 ⊕ 𝑐𝑖𝑛 
𝑐_𝑜𝑢𝑡 =  ((𝑥 ⊕ 𝑦) ∧  𝑐_𝑖𝑛)  ⊕ (𝑥 ∧ 𝑦) 

Automated design in Verilog 



Sequential adder of four bit numbers 



Task 1 

• For a given reasoning offer at least two verbal 
interpretation in natural language 

• Check reasoning manually via: 
– truth table 

– equivalent transformation of formulae 

– resolution technique 

• Check reasoning in Z3 

Propositional logic – check reasoning 



Variants for task 1 

𝑃 → 𝑄, 𝑃 ∨ 𝑅 ⊢ 𝑄𝑅 

𝑃 → (𝑄 → 𝑅), 𝑅 ⊢ 𝑄 
𝑃𝑄 → 𝑅, 𝑅 ⊢ 𝑄 ∨ 𝑃 

(𝑃 ∨ 𝑄) → 𝑅, 𝑅 ⊢ 𝑄 ∨ 𝑃 

𝑃𝑄 ∨ 𝑅, 𝑄 → 𝑅, 𝑅 ⊢ 𝑃 

𝑄 ∨ 𝑃, 𝑄 → 𝑅 ⊢ 𝑃 → 𝑅 

𝑄 → 𝑃, 𝑃 → 𝑅, 𝑄 ⊢ 𝑅 

𝑄 ∨ 𝑃, 𝑃 → 𝑅, 𝑄 ⊢ 𝑅 

𝑄 → 𝑃,𝑄 → 𝑅, 𝑅 ⊢ 𝑃 

(𝑄 → 𝑃) → (𝑄 → 𝑅), 𝑄 ⊢ 𝑅  

0. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 
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